Releases: ckdckd145/statmanager-kr
1.8.1.15
1.8.1.14
1.8.1.13
1.8.1.12
1.8.1.10
Improvement
Fixed a case where the bottom and top of the y-axis were being set in an inappropriate way in some figure methods.
Fixed a bug in the results table of a linear regression where some numbers were too small and were being displayed as 0.000 due to .round()
. Now, .round()
is not used.
What's Changed
- merge for dev (start to dev 1.8.2.0) by @ckdckd145 in #10
- Merge for update 1.8.1.10 by @ckdckd145 in #11
Full Changelog: 1.8.1.9...1.8.1.10
1.8.1.9
Bug fix
- Fixed a bug that prevented t-statistic from being printed in linear regression and hierarchical linear regression coefficient tables
What's Changed
- merging for dev 1.8.1.9 by @ckdckd145 in #8
- Merge for version update : 1.8.1.9 by @ckdckd145 in #9
Full Changelog: 1.8.1.8...1.8.1.9
1.8.1.8
Bug fix
- I found and fixed some typos in the printed sentence when the language is set to "eng".
Improvement
- The result of the linear regression will now show the standardized regression coefficient beta as well as the unstandardized regression coefficient. This improvement is also available in Hierarchical Linear Regression and Multivariate Linear Regression.
- The revised results table is shown below:
unstandadrized coefficient | standard error | standardized coefficient beta | p-value | 95% CI Low | 95% CI High | |
---|---|---|---|---|---|---|
const | 382.914 | 90.805 | 0.0000000 | 0.000 | 196.261 | 569.567 |
age | -0.666 | 2.889 | -0.0435420 | 0.819 | -6.604 | 5.272 |
prescore | -5.272 | 6.151 | -0.1663700 | 0.399 | -17.917 | 7.372 |
dummy_male | -45.919 | 34.491 | -0.2586170 | 0.195 | -116.816 | 24.977 |
What's Changed
- forgot to merge article file by @ckdckd145 in #6
- merge for update : 1.8.1.8 by @ckdckd145 in #7
Full Changelog: 1.8.1.7...1.8.1.8
1.8.1.7
Improvement
- Now, the nominal variables provided as covariates in One-way ANCOVA and Repeated-Measures ANCOVA are automatically dummy-coded.
- Add docstrings for classes and methods.
개선
- ANCOVA 분석에서 투입된 공변량 중 명목변수들이 이제 자동으로 더미코딩됩니다.
- 각종 클래스와 메소드에 독스트링이 추가되었습니다.
1.8.1.6
Bug fix
I found a bug where if you run an analysis by applying a selector
parameter in the .progress()
method, and then immediately change the selector
parameter again and run it once more, the filter is applied twice, rather than applying the new selector on the original data. This has now been fixed, and the selector
works fine.
Improvement
In some analysis, I've changed the format of the result printed from str
to pd.DataFrame
, which should make it easier to see the results more clearly.
The following analyses are affected by this change:
- independent samples t-test
- dependent samples t-test
- Welch’s two sample t-test
- Yuen’s two sample t-test
- Mann-Whitney U test
- Brunner-Munzel Test
- Wilcoxon-Signed Rank Test
- Kruskal Wallis Test
- Friedman Test
버그 픽스
.progress()
메소드에서 selector
파라미터를 한 번 적용한 후, 다시 selector 파라미터를 변경하여 적용할 때 이중으로 필터가 걸리는 현상을 발견했습니다.
수정하였으며, 이제 정상 작동합니다.
개선
일부 분석에서 결과가 출력되는 방식을 str
에서 pd.DataFrame
으로 바꿨습니다.
이제 조금 더 보기 편할 것으로 보입니다.
해당 변경이 적용된 분석은 아래와 같습니다.
- independent samples t-test
- dependent samples t-test
- Welch’s two sample t-test
- Yuen’s two sample t-test
- Mann-Whitney U test
- Brunner-Munzel Test
- Wilcoxon-Signed Rank Test
- Kruskal Wallis Test
- Friedman Test
1.8.1.5
Improvement
Readability of tables printed as results in Linear or Logistic Regression were improved.
Columns were renamed, and DataFrame were restructured.
The mapping logic applied to the dependent variable in multinomial logistic regression is printed alongside.
See the examples as below:
Summary | |
---|---|
Model: | OLS |
Dependent Variable: | postscore |
Date: | 2024-01-10 15:08 |
No. Observations: | 30 |
Df Model: | 4 |
Df Residuals: | 25 |
R-squared: | 0.209 |
Adj. R-squared: | 0.083 |
AIC: | 151.1306 |
BIC: | 158.1366 |
Log-Likelihood: | -70.565 |
F-statistic: | 1.656 |
Prob (F-statistic): | 0.192 |
Scale: | 7.7586 |
Omnibus: | 2.238 |
Prob(Omnibus): | 0.327 |
Skew: | 0.535 |
Kurtosis: | 2.34 |
Durbin-Watson: | 1.752 |
Jarque-Bera (JB): | 1.973 |
Prob(JB): | 0.373 |
Condition No.: | 2323 |
coefficient | standard error | t | p-value | 95% CI Low | 95% CI High | |
---|---|---|---|---|---|---|
const | 10.828 | 3.582 | 3.023 | 0.006 | 3.451 | 18.205 |
age | -0.168 | 0.088 | -1.908 | 0.068 | -0.349 | 0.013 |
income | -0.002 | 0.006 | -0.252 | 0.803 | -0.014 | 0.011 |
prescore | -0.116 | 0.19 | -0.614 | 0.545 | -0.507 | 0.274 |
dummy__male | -1.769 | 1.084 | -1.633 | 0.115 | -4.001 | 0.463 |
New analysis
Welch’s T-test is available. This is a t-test similar to Yuen's t-test that is applied to data that meets the normality assumption but does not meet the homoskedasticity assumption. Args for method
in .progress()
is ttest_ind_welch
.
개선 사항
선형 회귀 및 로지스틱 회귀에서 출력되는 결과 테이블의 가독성을 개선했습니다.
데이터프레임이 재구성되었으며, 이해를 돕기 위해 열의 이름도 변경했습니다.
그리고, 다항로지스틱회귀에서 종속변수에 적용되는 맵핑 로직이 함께 출력됩니다.
아래 예시를 참조하세요:
Summary | |
---|---|
Model: | OLS |
Dependent Variable: | postscore |
Date: | 2024-01-10 15:08 |
No. Observations: | 30 |
Df Model: | 4 |
Df Residuals: | 25 |
R-squared: | 0.209 |
Adj. R-squared: | 0.083 |
AIC: | 151.1306 |
BIC: | 158.1366 |
Log-Likelihood: | -70.565 |
F-statistic: | 1.656 |
Prob (F-statistic): | 0.192 |
Scale: | 7.7586 |
Omnibus: | 2.238 |
Prob(Omnibus): | 0.327 |
Skew: | 0.535 |
Kurtosis: | 2.34 |
Durbin-Watson: | 1.752 |
Jarque-Bera (JB): | 1.973 |
Prob(JB): | 0.373 |
Condition No.: | 2323 |
coefficient | standard error | t | p-value | 95% CI Low | 95% CI High | |
---|---|---|---|---|---|---|
const | 10.828 | 3.582 | 3.023 | 0.006 | 3.451 | 18.205 |
age | -0.168 | 0.088 | -1.908 | 0.068 | -0.349 | 0.013 |
income | -0.002 | 0.006 | -0.252 | 0.803 | -0.014 | 0.011 |
prescore | -0.116 | 0.19 | -0.614 | 0.545 | -0.507 | 0.274 |
dummy__male | -1.769 | 1.084 | -1.633 | 0.115 | -4.001 | 0.463 |
추가된 분석
Welch’s T-test가 추가되었습니다. Yuen’s T-test와 유사하게 정규성 가정은 충족하지만, 등분산성 가정을 충족하지 못하는 데이터 세트에 적용하는 T-test입니다. .progress()
메소드에서 method
파라미터에 ttest_ind_welch
를 제공하면 됩니다.