Skip to content

Commit c969be5

Browse files
committed
update for the article revision (1.8.1.14.)
1 parent f953b3b commit c969be5

File tree

3 files changed

+4
-110
lines changed

3 files changed

+4
-110
lines changed

article/paper.md

Lines changed: 2 additions & 108 deletions
Original file line numberDiff line numberDiff line change
@@ -42,115 +42,9 @@ In conclusion, depending on the researcher's programming experience and the purp
4242

4343
# Features
4444

45-
`Statmanager-kr` was designed to be compatible with the wide range form of `Pandas.DataFrame`.
46-
47-
## User-friendly Features
48-
49-
### Setting the Language
45+
Learn more about the features in the *[official documentation](https://cslee145.notion.site/60cbfcbc90614fe990e02ab8340630cc?v=4991650ae5ce4427a215d1043802f5c0)*. The instructions for running each analysis are also described in *[the manual section of the official documentation](https://cslee145.notion.site/Statmanager-kr-Official-Documentation-74a610c12881402d96dc5d1654f97433#be93db7f4159419fa73eb324d6567793)*. *[Korean versions of the official documenation](https://cslee145.notion.site/fd776d4f9a4f4c9db2cf1bbe60726971?v=3b2b237555fc4cd3a41a8da337d80c01)* are also available.
46+
5047

51-
It is possible to change the language by adjusting the `language` parameter when creating an object of the Stat_Manager class. The supported languages are Korean ("kor") and English ("eng"), and the default is Korean.
52-
53-
```python
54-
sm = Stat_Manager(df, language = 'eng')
55-
```
56-
57-
### Other Methods
58-
59-
Users can search for a specific usage by calling the `.howtouse()` method. It can also change the language with `.set_language()`, or change the dataframe by running `.change_dataframe()`.
60-
61-
62-
## Statistical Test
63-
64-
The implementation of analysis in `Statmanager-kr` can be summarized as follows.
65-
66-
| Objective | Analysis |
67-
| ------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------- |
68-
| Check the normality assumption | Kolmogorov-Smirnov Test, Shapiro-Wilks Test, Z-Skewness & Z-Kurtosis Test |
69-
| Check the homoskedasticity assumption | Levene's Test, F<sub>max</sub> Test |
70-
| Frequency analysis | Chi-Squared Test, Fisher’s Exact Test |
71-
| Check the reliability of the scale | Calculating Cronbach’s Alpha |
72-
| Correlation analysis | Pearson’s r, Spearman’s rho, Kendall’s tau |
73-
| Comparison between groups | Independent Samples T-test, Yuen’s T-test, Welch’s T-test, Mann-whitney U test, Brunner-Munzel Test, One-way ANOVA, Kruskal Wallis Test, One-way ANCOVA |
74-
| Comparison within group | Dependent Samples T-test, Wilcoxon-Signed Rank Test, One-way Repeated Measures ANOVA, Friedman Test, Repeated Measures ANCOVA, |
75-
| Comparison by multiple ways | N-way ANOVA, N-way Mixed Repeated Measures ANOVA |
76-
| Regression analysis | Linear Regression, Logistic Regression |
77-
| etc | Bootstrapping percentile method |
78-
79-
<br>Each analysis method has its own <b>"key"</b> that allows it to be used in the `.progress()` method. The analysis is performed by passing the key for each analysis method to the `method` parameter in the `.progress()` method, the variables to be analyzed to the `vars` parameter, and the group variables to the `group_vars` parameter.
80-
81-
```python
82-
import pandas as pd
83-
from statmanager import Stat_Manager
84-
85-
# 1. Reading the data
86-
df = pd.read_csv(r'testdata.csv', index_col = 'name')
87-
88-
# 2. Creating object of Stat_Manager class
89-
sm = Stat_Manager(df)
90-
91-
# 3. Running: check the difference in weight by sex
92-
sm.progress(method = 'ttest_ind', vars = 'weight', group_vars = 'sex')
93-
```
94-
95-
96-
<br>Also, if a post-hoc test is required, as in the case of a one-way ANOVA (key of one-way ANOVA is `f_oneway`), it can be conducted by simply providing `True` to the `posthoc` parameter.
97-
98-
```python
99-
sm.progress(method = 'f_oneway', vars = 'income', group_vars = 'condition', posthoc = True)
100-
```
101-
102-
### Keys and Related Informations
103-
The method-specific information needed to use the `.progress()` method can be found by using the `.howtouse()` method. The detailed information is summarized in the table below:
104-
105-
| Key | Analysis | Required Parameters | Optional Parameters |
106-
| ------------------ | ----------------------------------- | -------------------- | --------------------------- |
107-
| `kstest` | Kolmogorov-Smirnov Test | `vars` | `group_vars` |
108-
| `shapiro` | Shapiro-Wilks Test | `vars` | `group_vars` |
109-
| `z_normal` | Z-Skewness & Z-Kurtosis test | `vars` | `group_vars` |
110-
| `levene` | Levene Test | `vars`, `group_vars` |
111-
| `fmax` | F<sub>max</sub> Test | `vars`, `group_vars` |
112-
| `chi2_contingency` | Chi-squared Test | `vars` |
113-
| `fisher` | Fisher's Exact Test | `vars` |
114-
| `pearsonr` | Pearson's r | `vars` |
115-
| `spearmanr` | Spearman's rho | `vars` |
116-
| `kendallt` | Kendall's tau | `vars` |
117-
| `ttest_ind` | Independent Samples T-test | `vars`, `group_vars` |
118-
| `ttest_rel` | Dependent Samples T-test | `vars` |
119-
| `ttest_ind_trim` | Yuen's Two Samples T-test | `vars`, `group_vars` |
120-
| `ttest_ind_welch` | Welch's Two Samples T-test | `vars`, `group_vars` |
121-
| `mannwhitneyu` | Mann-Whitney U Test | `vars`, `group_vars` |
122-
| `brunner` | Brunner-Munzel Test | `vars`, `group_vars` |
123-
| `wilcoxon` | Wilcoxon-Signed Rank Test | `vars` |
124-
| `bootstrap` | Boostrap Percentile Method | `vars` | `group_vars` |
125-
| `f_oneway` | One-way ANOVA | `vars`, `group_vars` | `posthoc`, `posthoc_method` |
126-
| `f_oneway_rm` | One-way Repeated Measures ANOVA | `vars` | `posthoc`, `posthoc_method` |
127-
| `kruskal` | Kruskal-Wallis Test | `vars`, `group_vars` | `posthoc`, `posthoc_method` |
128-
| `friedman` | Friedman Test | `vars` | `posthoc`, `posthoc_method` |
129-
| `f_nway` | N-way ANOVA | `vars`, `group_vars` | `posthoc`, `posthoc_method` |
130-
| `f_nway_rm` | N-way Mixed Repeated Measures ANOVA | `vars`, `group_vars` | `posthoc`, `posthoc_method` |
131-
| `linearr` | Linear Regression | `vars` |
132-
| `hier_linearr` | Hierarchical Linear Regression | `vars` |
133-
| `logisticr` | Logistic Regression | `vars` |
134-
| `oneway_ancova` | One-way ANCOVA | `vars`, `group_vars` |
135-
| `rm_ancova` | One-way Repeated Measures ANCOVA | `vars` |
136-
| `cronbach` | Calculating Cronbach's Alpha | `vars` |
137-
138-
Also `Statmanager-kr` provides two post-hoc methods. It can be run by providing the key of the `posthoc_method` parameter as follows:
139-
140-
| Key of `posthoc_method` | Method |
141-
| ----------------------- | --------------------- |
142-
| `bonf` | Bonferroni Correction |
143-
| `tukey` | Tukey HSD |
144-
145-
146-
## Visualization
147-
148-
A figure is automatically generated for the results of the analysis when a `.figure()` is run as a chain method against a `.progress()`.
149-
150-
```python
151-
# Running: check the difference in weight by sex with figure
152-
sm.progress(method = 'ttest_ind', vars = 'weight', group_vars = 'sex').figure()
153-
```
15448

15549
# Acknowledgements
15650

statmanager/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,5 +18,5 @@
1818
from .posthoc_functions import *
1919
from .effectsize_functions import *
2020

21-
__version__ = '1.8.1.13'
21+
__version__ = '1.8.1.14'
2222
__all__ = ['Stat_Manager']

statmanager/setup.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88

99
setup(
1010
name='statmanager-kr',
11-
version='1.8.1.13',
11+
version='1.8.1.14',
1212
license='MIT',
1313
long_description=description_markdown,
1414
long_description_content_type='text/markdown',

0 commit comments

Comments
 (0)