Skip to content

woohyun-jeon/pytorch-classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Image Classification in PyTorch

This repository contains the implementation of image classification models in PyTorch.

Prerequisites

  • python >= 3.6
  • torch >= 1.8.1
  • torchvision >= 0.9.1

Usage

  1. Clone the repository and install the required dependencies with the following command:
$ git clone https://github.com/woohyun-jeon/pytorch-classification.git
$ cd pytorch-classification
$ pip install -r requirements.txt
  1. Download ImageNet into datasets directory

The directory structure should be as follows:

  datasets/
    ILSVRC/      
      Annotations/
        CLS-LOC/
            train/
                n01440764/
                    n01440764_10040.JPEG
                    ...
                ...
            val/
                n01440764/
                    n01440764_0000001.JPEG
                ...
      Data/
        CLS-LOC/
            train/
                n01440764/
                    n01440764_10040.xml
                    ...
                ...
            val/
                n01440764/
                    n01440764_0000001.xml
                ...
            test/
                *
                ...
      ImageSets/
        CLS-LOC/
            test.txt
            train_cls.txt
            train_loc.txt
            val.txt      
  1. Run python train.py for training

Supported Models

  • Inception v1
  • VGGNet
  • ResNet
  • Inception v2,3
  • Pre-Activation ResNet
  • ResNext
  • DenseNet
  • Inception v4
  • SqueezeNet
  • Wide Residual Networks
  • Xception
  • Dual Path Networks
  • MobileNet v1
  • MobileNet v2
  • Residual Attention Network
  • MnasNet
  • ShuffleNet v1
  • ShuffleNet v2
  • SE-ResNet
  • CBAM-ResNet
  • EfficientNet
  • Vision Transformer
  • Swin Transformer

About

Implementation of image classification models with PyTorch

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages