Skip to content

A collection of implementations of mathematical algorithms and concepts from various academic papers in multiple programming languages.

License

Notifications You must be signed in to change notification settings

ramsyana/Math-Papers-with-Code

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

55 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Math Papers with Code

A collection of implementations of mathematical algorithms and concepts from various academic papers in multiple programming languages.

Implemented Papers

Current Implementations

Paper Title Author(s) arXiv Implementations Status Directory
Relative Sizes of Iterated Sumsets Noah Kravitz 2412.18598 Python ✅ Complete papers/iterated-sumsets/
A Remark on an Explicit Formula for the Sums of Powers of Integers José L. Cereceda 2503.14508v2 Python ✅ Complete papers/stirling-numbers-power-sums/
The Neveu-Schwarz Group and Schwarz's Extended Super Mumford Form Katherine A. Maxwell & Alexander A. Voronov 2412.18585 Python ⏸️ On Hold papers/super-mumford/
Derivative Polynomials and Infinite Series for Squigonometric Functions Bart S. Van Lith 2503.19624 Python ✅ Complete papers/squigonometry/
Inverse Source Problems for a Multidimensional Time-Fractional Wave Equation D.K. Durdiev 2503.17404v1 Python ✅ Complete papers/frac-wave-inverse-problems/

Implementation Status Legend

Status Description
✅ Complete Implementation finished and tested
🚧 In Progress Currently being implemented
📝 Planned On roadmap for implementation
⏸️ On Hold Implementation paused

Coming Soon

Future papers will be added to this collection. Suggestions for new implementations are welcome through issues or pull requests.

Repository Structure

Each paper implementation is organized in its own directory with its implementation:

.
├── README.md
├── papers/
│   ├── iterated-sumsets/
│   │   ├── README.md
│   │   └── python/
│   │       ├── iterated_sumsets.py
│   │       └── tests/
│   ├── super-mumford/
│   │   ├── README.md
│   │   └── python/
│   │       ├── core/
│   │       │   ├── __init__.py
│   │       │   ├── laurent_series.py
│   │       │   ├── matrix_ops.py
│   │       │   └── vector_spaces.py
│   │       ├── geometry/
│   │       │   ├── __init__.py
│   │       │   ├── grassmannian.py
│   │       │   └── line_bundles.py
│   │       ├── groups/
│   │       │   ├── __init__.py
│   │       │   ├── heisenberg.py
│   │       │   ├── neveu_schwarz.py
│   │       │   └── witt.py
│   │       ├── tests/
│   │       │   ├── __init__.py
│   │       │   ├── test_laurent_series.py
│   │       │   ├── test_matrix_ops.py
│   │       │   └── test_vector_spaces.py
│   │       ├── utils/
│   │       │   ├── __init__.py
│   │       │   └── validation.py
│   │       ├── README.md
│   │       └── pyproject.toml
│   └── future-papers/
│       ├── README.md
│       └── python/
└── common/
    ├── testing/
    └── benchmarks/

Using the Implementations

Each paper implementation includes its own README with specific instructions. For Python implementations:

# Example for Super Mumford project
cd papers/super-mumford/python
pip install -r requirements.txt
python -m pytest tests/

Contributing

Contributions are welcome! To contribute:

  1. Select a mathematics paper to implement
  2. Create a new directory under papers/
  3. Implement the paper's concepts
  4. Include:
    • README.md with paper details
    • Source code
    • Tests (if applicable)
    • Docker support (if applicable)
    • Documentation (if applicable)
    • Performance benchmarks (optional)

Please see CONTRIBUTING.md for detailed guidelines.

Paper Implementation Guidelines

Each paper implementation should:

  1. Documentation

    • Include link to original paper
    • Explain key concepts
    • Provide usage examples
    • Document any assumptions or limitations
  2. Code Structure

    • Clear organization
    • Well-commented code
    • Tests
    • Docker support (where applicable)
  3. Performance

    • Efficient implementations
    • Benchmarking (optional)
    • Optimization notes

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • All original paper authors
  • Contributors to the implementations
  • Open source community

About

A collection of implementations of mathematical algorithms and concepts from various academic papers in multiple programming languages.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages