Skip to content

affine creates artefacts on the edges of the image #8083

Open
@antoinebrl

Description

@antoinebrl

🐛 Describe the bug

When employing the affine functional operation (in both v1 and v2), it's evident that black borders are introduced around the image, even when the fill value matches the image content. These black margins are observable when using both uint8 and float32 data types, and this phenomenon occurs consistently on both Ubuntu and Mac M1.

Upon comparing the implementation of the 'affine' operation in torchvision with that in Kornia, I am uncertain whether the interpolation issue is limited to the image edges. Notably, when utilizing Kornia, the output appears to be more visually appealing when applied to an image.

import torch
import torchvision
from torchvision.transforms.v2.functional import affine
from torchvision.tv_tensors import Image
from torchvision.transforms.v2.functional._geometry import _get_inverse_affine_matrix
from kornia.geometry.transform import get_affine_matrix2d, warp_affine
from torchvision.transforms import InterpolationMode

image = Image(128 * torch.ones((3, 240, 200), dtype=torch.float))

angle =30
trans = (0,0)
scale = 1.0
shear = (0,0)
center = (image.shape[-1] / 2, image.shape[-2] / 2)
inter = InterpolationMode.BILINEAR
fill = [128, 128, 128]

M = get_affine_matrix2d(
    torch.Tensor(trans),
    torch.Tensor([center]),
    torch.Tensor([[scale, scale]]),
    torch.Tensor([angle]),
    torch.Tensor([shear[0]]),
    torch.Tensor([shear[1]]),
)

kn_img = warp_affine(
    image.unsqueeze(0),
    M[:, :2],
    image.shape[-2:],
    mode="bilinear",
    padding_mode="fill",
    fill_value=torch.tensor(fill),
    align_corners=False,
)

tv_img = affine(
    image,
    angle=angle,
    translate=trans,
    scale=scale,
    shear=shear,
    fill=fill,
    interpolation=inter,
)

torchvision.io.write_png(kn_img[0].to(dtype=torch.uint8), "affine_kornia.png")
torchvision.io.write_png(tv_img.to(dtype=torch.uint8), "affine_torchvision.png")
Kornia Torchvision
affine_kornia affine_torchvision

Versions

PyTorch version: 2.1.0
Is debug build: False
CUDA used to build PyTorch: None
ROCM used to build PyTorch: N/A

OS: macOS 13.6 (arm64)
GCC version: Could not collect
Clang version: 15.0.0 (clang-1500.0.40.1)
CMake version: Could not collect
Libc version: N/A

Python version: 3.10.9 (main, Jun 29 2023, 12:23:23) [Clang 14.0.3 (clang-1403.0.22.14.1)] (64-bit runtime)
Python platform: macOS-13.6-arm64-arm-64bit
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Apple M1 Pro

Versions of relevant libraries:
[pip3] flake8==6.1.0
[pip3] mypy==1.6.0
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.25.2
[pip3] onnx==1.14.1
[pip3] pytorch-lightning==2.0.9
[pip3] pytorch-ranger==0.1.1
[pip3] torch==2.1.0
[pip3] torch-optimizer==0.3.0
[pip3] torchdata==0.6.1
[pip3] torchmetrics==1.0.3
[pip3] torchtext==0.15.2
[pip3] torchvision==0.16.0

cc @vfdev-5

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions