Skip to content

clean up device checks in float8 unit test files #923

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Sep 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 0 additions & 23 deletions test/float8/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -231,15 +231,6 @@ def test_linear(
linear_dtype: torch.dtype,
linear_bias: bool,
):
if not emulate:
if not torch.cuda.is_available():
warnings.warn("CUDA not available")
pytest.skip()
elif torch.cuda.get_device_capability() < (9, 0):
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this line made this test skip in CI, not intended, removing. Similar cases in the rest of this file.

warnings.warn(
f"CUDA capability {torch.cuda.get_device_capability()} < (9.0)"
)
pytest.skip()
x = torch.randn(*x_shape, device="cuda", dtype=linear_dtype)
m_ref = nn.Linear(16, 32, bias=linear_bias, device="cuda", dtype=linear_dtype)

Expand Down Expand Up @@ -287,16 +278,6 @@ def test_autocast_outputs(
emulate: bool,
linear_dtype: torch.dtype,
):
if not emulate:
if not torch.cuda.is_available():
warnings.warn("CUDA not available")
pytest.skip()
elif torch.cuda.get_device_capability() < (9, 0):
warnings.warn(
f"CUDA capability {torch.cuda.get_device_capability()} < (9.0)"
)
pytest.skip()

m_ref = nn.Linear(32, 16, device="cuda", dtype=linear_dtype)
config = Float8LinearConfig(
cast_config_input=CastConfig(scaling_type=ScalingType.DELAYED),
Expand Down Expand Up @@ -334,10 +315,6 @@ def test_autocast_outputs(
@pytest.mark.parametrize("emulate", [True, False] if is_cuda_8_9 else [True])
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
def test_type_cast(self, linear_dtype: torch.dtype, emulate: bool):
emulate = (
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

the parametrization and skipping if cuda not available should already accomplish this

not torch.cuda.is_available() or torch.cuda.get_device_capability() < (9, 0)
)

m = nn.Linear(32, 16, device="cuda", dtype=linear_dtype)
config = Float8LinearConfig(emulate=emulate)
m = Float8Linear.from_float(copy.deepcopy(m), config)
Expand Down
3 changes: 2 additions & 1 deletion test/float8/test_compile.py
Original file line number Diff line number Diff line change
Expand Up @@ -224,7 +224,8 @@ def forward(self, x):
return x_hp
return x_fp8

@unittest.skipIf(not torch.cuda.is_available() or not is_H100, "CUDA with float8 support not available")
# TODO(future): figure out why the test below fails on CUDA capability 8.9
@unittest.skipIf(not torch.cuda.is_available() or not is_H100, "CUDA with capability 9.0 or greater not available")
def test_float8_with_graph_break_in_the_middle(self):
"""Test that having Float8Tensor object at the boundary of a subgraph"""
cnts = CompileCounterWithBackend("inductor")
Expand Down
Loading