Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 13 additions & 5 deletions xarray/core/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -4021,30 +4021,38 @@ def drop_sel(self, labels=None, *, errors="raise", **labels_kwargs):

Examples
--------
>>> data = np.random.randn(2, 3)
>>> data = np.arange(6).reshape(2, 3)
>>> labels = ["a", "b", "c"]
>>> ds = xr.Dataset({"A": (["x", "y"], data), "y": labels})
>>> ds
<xarray.Dataset>
Dimensions: (x: 2, y: 3)
Coordinates:
* y (y) <U1 'a' 'b' 'c'
Dimensions without coordinates: x
Data variables:
A (x, y) int64 0 1 2 3 4 5
>>> ds.drop_sel(y=["a", "c"])
<xarray.Dataset>
Dimensions: (x: 2, y: 1)
Coordinates:
* y (y) <U1 'b'
Dimensions without coordinates: x
Data variables:
A (x, y) float64 0.4002 1.868
A (x, y) int64 1 4
>>> ds.drop_sel(y="b")
<xarray.Dataset>
Dimensions: (x: 2, y: 2)
Coordinates:
* y (y) <U1 'a' 'c'
Dimensions without coordinates: x
Data variables:
A (x, y) float64 1.764 0.9787 2.241 -0.9773
A (x, y) int64 0 2 3 5
"""
if errors not in ["raise", "ignore"]:
raise ValueError('errors must be either "raise" or "ignore"')

labels = either_dict_or_kwargs(labels, labels_kwargs, "drop")
labels = either_dict_or_kwargs(labels, labels_kwargs, "drop_sel")

ds = self
for dim, labels_for_dim in labels.items():
Expand Down Expand Up @@ -4110,7 +4118,7 @@ def drop_isel(self, indexers=None, **indexers_kwargs):
A (x, y) int64 0 2 3 5
"""

indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "drop")
indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "drop_isel")

ds = self
dimension_index = {}
Expand Down
2 changes: 1 addition & 1 deletion xarray/tests/test_dataarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -2329,7 +2329,7 @@ def test_drop_index_labels(self):

def test_drop_index_positions(self):
arr = DataArray(np.random.randn(2, 3), dims=["x", "y"])
actual = arr.drop_sel(y=[0, 1])
actual = arr.drop_isel(y=[0, 1])
expected = arr[:, 2:]
assert_identical(actual, expected)

Expand Down