Skip to content

Better dask support in polyval #6411

Closed
Closed
@dcherian

Description

@dcherian

Is your feature request related to a problem?

polyval does not handle dask inputs well.

nt = 8772 // 4
ny = 489
nx = 655
# chunks like the data is stored on disk
# small in time, big in space
# because the chunk sizes are -1 along lat, lon;
# reshaping this array to (time, latlon) prior to fitting is pretty cheap
chunks = (8, -1, -1)

da = xr.DataArray(
    dask.array.random.random((nt, ny, nx), chunks=chunks),
    dims=("ocean_time", "eta_rho", "xi_rho"),
)

dim = "ocean_time"
deg = 1

p = da.polyfit(dim="ocean_time", deg=1, skipna=False)

# create a chunked version of the "ocean_time" dimension
chunked_dim = xr.DataArray(
    dask.array.from_array(da[dim].data, chunks=da.chunksizes[dim]), dims=dim, name=dim
)
xr.polyval(chunked_dim, p.polyfit_coefficients)

image

Describe the solution you'd like

Here's a partial solution. It does not handle datetime inputs (polyval handles this using get_clean_interp_index which computes dask inputs). But I've replaced the call to np.vander and used xr.dot.

def polyval(coord, coeffs, degree_dim="degree"):
    x = coord.data

    deg_coord = coeffs[degree_dim]
    N = int(deg_coord.max()) + 1

    lhs = xr.DataArray(
        np.stack([x ** (N - 1 - i) for i in range(N)], axis=1),
        dims=(coord.name, degree_dim),
        coords={coord.name: coord, degree_dim: np.arange(deg_coord.max() + 1)[::-1]},
    )
    return xr.dot(lhs, coeffs, dims=degree_dim)

polyval(chunked_dim, p.polyfit_coefficients)

This looks like what I expected
image

cc @aulemahal

Describe alternatives you've considered

No response

Additional context

No response

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions