Skip to content

slow performance with open_mfdataset #1385

Open
@rabernat

Description

@rabernat

We have a dataset stored across multiple netCDF files. We are getting very slow performance with open_mfdataset, and I would like to improve this.

Each individual netCDF file looks like this:

%time ds_single = xr.open_dataset('float_trajectories.0000000000.nc')
ds_single
CPU times: user 14.9 ms, sys: 48.4 ms, total: 63.4 ms
Wall time: 60.8 ms

<xarray.Dataset>
Dimensions:  (npart: 8192000, time: 1)
Coordinates:
  * time     (time) datetime64[ns] 1993-01-01
  * npart    (npart) int32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...
Data variables:
    z        (time, npart) float32 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 ...
    vort     (time, npart) float32 -9.71733e-10 -9.72858e-10 -9.73001e-10 ...
    u        (time, npart) float32 0.000545563 0.000544884 0.000544204 ...
    v        (time, npart) float32 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ...
    x        (time, npart) float32 180.016 180.047 180.078 180.109 180.141 ...
    y        (time, npart) float32 -79.9844 -79.9844 -79.9844 -79.9844 ...

As shown above, a single data file opens in ~60 ms.

When I call open_mdsdataset on 49 files (each with a different time dimension but the same npart), here is what happens:

%time ds = xr.open_mfdataset('*.nc', )
ds
CPU times: user 1min 31s, sys: 25.4 s, total: 1min 57s
Wall time: 2min 4s

<xarray.Dataset>
Dimensions:  (npart: 8192000, time: 49)
Coordinates:
  * npart    (npart) int64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...
  * time     (time) datetime64[ns] 1993-01-01 1993-01-02 1993-01-03 ...
Data variables:
    z        (time, npart) float64 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 ...
    vort     (time, npart) float64 -9.717e-10 -9.729e-10 -9.73e-10 -9.73e-10 ...
    u        (time, npart) float64 0.0005456 0.0005449 0.0005442 0.0005437 ...
    v        (time, npart) float64 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ...
    x        (time, npart) float64 180.0 180.0 180.1 180.1 180.1 180.2 180.2 ...
    y        (time, npart) float64 -79.98 -79.98 -79.98 -79.98 -79.98 -79.98 ...

It takes over 2 minutes to open the dataset. Specifying concat_dim='time' does not improve performance.

Here is %prun of the open_mfdataset command.

         748994 function calls (724222 primitive calls) in 142.160 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
       49   62.455    1.275   62.458    1.275 {method 'get_indexer' of 'pandas.index.IndexEngine' objects}
       49   47.207    0.963   47.209    0.963 base.py:1067(is_unique)
      196    7.198    0.037    7.267    0.037 {operator.getitem}
       49    4.632    0.095    4.687    0.096 netCDF4_.py:182(_open_netcdf4_group)
      240    3.189    0.013    3.426    0.014 numeric.py:2476(array_equal)
       98    1.937    0.020    1.937    0.020 {numpy.core.multiarray.arange}
4175/3146    1.867    0.000    9.296    0.003 {numpy.core.multiarray.array}
       49    1.525    0.031  119.144    2.432 alignment.py:251(reindex_variables)
       24    1.065    0.044    1.065    0.044 {method 'cumsum' of 'numpy.ndarray' objects}
       12    1.010    0.084    1.010    0.084 {method 'sort' of 'numpy.ndarray' objects}
5227/4035    0.660    0.000    1.688    0.000 collections.py:50(__init__)
       12    0.600    0.050    3.238    0.270 core.py:2761(insert)
12691/7497    0.473    0.000    0.875    0.000 indexing.py:363(shape)
   110728    0.425    0.000    0.663    0.000 {isinstance}
       12    0.413    0.034    0.413    0.034 {method 'flatten' of 'numpy.ndarray' objects}
       12    0.341    0.028    0.341    0.028 {numpy.core.multiarray.where}
        2    0.333    0.166    0.333    0.166 {pandas._join.outer_join_indexer_int64}
        1    0.331    0.331  142.164  142.164 <string>:1(<module>)

It looks like most of the time is being spent on reindex_variables. I understand why this happens...xarray needs to make sure the dimensions are the same in order to concatenate them together.

Is there any obvious way I could improve the load time? For example, can I give a hint to xarray that this reindex_variables step is not necessary, since I know that all the npart dimensions are the same in each file?

Possibly related to #1301 and #1340.

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions