News | Installation | Datasets | Training | Inference | Acknowledgement
This is the official repo for the paper "Arbitrary Reading Order Scene Text Spotter with Local Semantics Guidance", which is accepted to AAAI 2025.
We will release our code soon.
2024/12/19
- Update the README!
2024/12/15
- Update the arxiv version!
2024/12/10
- The paper is accepted by AAAI 2025!
conda create -n lsg python=3.9 -y
conda activate lsg
pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install -U openmim
mim install mmcv-full==1.5.2
mim install mmdet==2.28.2
git clone https://github.com/pd162/LSG
cd LSG
pip install -e .
The convert annotations can be download from [Google Drive], Please download and extract the above datasets into the data
folder following the file structure below.
data
├─totaltext
│ │ totaltext_train.json
│ │ totaltext_test.json
│ └─imgs
│ ├─training
│ └─test
├─CTW1500
│ │ instances_training.json
│ │ instance_test.json
│ └─imgs
│ ├─training
│ └─test
├─mlt
│ │ train_polygon.json
│ └─images
├─synthtext-150k
├─syntext1
│ │ train_polygon.json
│ └─images
├─syntext2
│ train_polygon.json
└─images
CUDA_VISIBLE_DEVICES=0,1 ./tools/train.sh config/LSG/lsg_pretrain.py work_dirs/pretrain 2
CUDA_VISIBLE_DEVICES=0 python tools/test.py config/tpsnet/tpsnet_totaltext.py work_dirs/totaltext/latest.pth --eval eval_text