Skip to content

Flex comp #1280

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
106 changes: 99 additions & 7 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -222,8 +222,82 @@ def f(self, other, axis=default_axis, level=None, fill_value=None):

return f

def _flex_comp_method(op, name, default_axis='columns'):

def comp_method(func, name):
def na_op(x, y):
try:
result = op(x, y)
except TypeError:
xrav = x.ravel()
result = np.empty(x.size, dtype=x.dtype)
if isinstance(y, np.ndarray):
yrav = y.ravel()
mask = notnull(xrav) & notnull(yrav)
result[mask] = op(xrav[mask], yrav[mask])
else:
mask = notnull(xrav)
result[mask] = op(xrav[mask], y)

if op == operator.ne:
np.putmask(result, -mask, False)
else:
np.putmask(result, -mask, False)
result = result.reshape(x.shape)

return result

@Appender('Wrapper for flexible comparison methods %s' % name)
def f(self, other, axis=default_axis, level=None):
if isinstance(other, DataFrame): # Another DataFrame
return self._flex_compare_frame(other, na_op, level)

elif isinstance(other, Series):
try:
return self._combine_series(other, na_op, None, axis, level)
except Exception:
return self._combine_series_infer(other, na_op)

elif isinstance(other, (list, tuple)):
if axis is not None and self._get_axis_name(axis) == 'index':
casted = Series(other, index=self.index)
else:
casted = Series(other, index=self.columns)

try:
return self._combine_series(casted, na_op, None, axis, level)
except Exception:
return self._combine_series_infer(casted, na_op)

elif isinstance(other, np.ndarray):
if other.ndim == 1:
if axis is not None and self._get_axis_name(axis) == 'index':
casted = Series(other, index=self.index)
else:
casted = Series(other, index=self.columns)

try:
return self._combine_series(casted, na_op, None, axis,
level)
except Exception:
return self._combine_series_infer(casted, na_op)

elif other.ndim == 2:
casted = DataFrame(other, index=self.index,
columns=self.columns)
return self._flex_compare_frame(casted, na_op, level)

else: # pragma: no cover
raise ValueError("Bad argument shape")

else:
return self._combine_const(other, na_op)

f.__name__ = name

return f


def _comp_method(func, name):
@Appender('Wrapper for comparison method %s' % name)
def f(self, other):
if isinstance(other, DataFrame): # Another DataFrame
Expand Down Expand Up @@ -615,12 +689,19 @@ def __neg__(self):
return self._wrap_array(arr, self.axes, copy=False)

# Comparison methods
__eq__ = comp_method(operator.eq, '__eq__')
__ne__ = comp_method(operator.ne, '__ne__')
__lt__ = comp_method(operator.lt, '__lt__')
__gt__ = comp_method(operator.gt, '__gt__')
__le__ = comp_method(operator.le, '__le__')
__ge__ = comp_method(operator.ge, '__ge__')
__eq__ = _comp_method(operator.eq, '__eq__')
__ne__ = _comp_method(operator.ne, '__ne__')
__lt__ = _comp_method(operator.lt, '__lt__')
__gt__ = _comp_method(operator.gt, '__gt__')
__le__ = _comp_method(operator.le, '__le__')
__ge__ = _comp_method(operator.ge, '__ge__')

eq = _flex_comp_method(operator.eq, 'eq')
ne = _flex_comp_method(operator.ne, 'ne')
gt = _flex_comp_method(operator.gt, 'gt')
lt = _flex_comp_method(operator.lt, 'lt')
ge = _flex_comp_method(operator.ge, 'ge')
le = _flex_comp_method(operator.le, 'le')

def dot(self, other):
"""
Expand Down Expand Up @@ -2911,6 +2992,17 @@ def _compare_frame(self, other, func):
return self._constructor(data=new_data, index=self.index,
columns=self.columns, copy=False)

def _flex_compare_frame(self, other, func, level):
if not self._indexed_same(other):
self, other = self.align(other, 'outer', level=level)

new_data = {}
for col in self.columns:
new_data[col] = func(self[col], other[col])

return self._constructor(data=new_data, index=self.index,
columns=self.columns, copy=False)

def combine(self, other, func, fill_value=None):
"""
Add two DataFrame objects and do not propagate NaN values, so if for a
Expand Down
111 changes: 111 additions & 0 deletions pandas/tests/test_frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -2447,6 +2447,117 @@ def test_arith_flex_frame(self):
result = self.frame[:0].add(self.frame)
assert_frame_equal(result, self.frame * np.nan)

def test_bool_flex_frame(self):
data = np.random.randn(5, 3)
other_data = np.random.randn(5, 3)
df = DataFrame(data)
other = DataFrame(other_data)

# No NAs

# DataFrame
self.assert_(df.eq(df).values.all())
self.assert_(not df.ne(df).values.any())

assert_frame_equal((df == other), df.eq(other))
assert_frame_equal((df != other), df.ne(other))
assert_frame_equal((df > other), df.gt(other))
assert_frame_equal((df < other), df.lt(other))
assert_frame_equal((df >= other), df.ge(other))
assert_frame_equal((df <= other), df.le(other))

# Unaligned
def _check_unaligned_frame(meth, op, df, other, default=False):
part_o = other.ix[3:, 1:].copy()
rs = meth(df, part_o)
xp = op(df, part_o.reindex(index=df.index, columns=df.columns))
assert_frame_equal(rs, xp)

_check_unaligned_frame(DataFrame.eq, operator.eq, df, other)
_check_unaligned_frame(DataFrame.ne, operator.ne, df, other,
default=True)
_check_unaligned_frame(DataFrame.gt, operator.gt, df, other)
_check_unaligned_frame(DataFrame.lt, operator.lt, df, other)
_check_unaligned_frame(DataFrame.ge, operator.ge, df, other)
_check_unaligned_frame(DataFrame.le, operator.le, df, other)

# Series
def _test_seq(df, idx_ser, col_ser):
idx_eq = df.eq(idx_ser, axis=0)
col_eq = df.eq(col_ser)
idx_ne = df.ne(idx_ser, axis=0)
col_ne = df.ne(col_ser)
assert_frame_equal(col_eq, df == Series(col_ser))
assert_frame_equal(col_eq, -col_ne)
assert_frame_equal(idx_eq, -idx_ne)
assert_frame_equal(idx_eq, df.T.eq(idx_ser).T)

idx_gt = df.gt(idx_ser, axis=0)
col_gt = df.gt(col_ser)
idx_le = df.le(idx_ser, axis=0)
col_le = df.le(col_ser)

assert_frame_equal(col_gt, df > Series(col_ser))
assert_frame_equal(col_gt, -col_le)
assert_frame_equal(idx_gt, -idx_le)
assert_frame_equal(idx_gt, df.T.gt(idx_ser).T)

idx_ge = df.ge(idx_ser, axis=0)
col_ge = df.ge(col_ser)
idx_lt = df.lt(idx_ser, axis=0)
col_lt = df.lt(col_ser)
assert_frame_equal(col_ge, df >= Series(col_ser))
assert_frame_equal(col_ge, -col_lt)
assert_frame_equal(idx_ge, -idx_lt)
assert_frame_equal(idx_ge, df.T.ge(idx_ser).T)

idx_ser = Series(np.random.randn(5))
col_ser = Series(np.random.randn(3))
_test_seq(df, idx_ser, col_ser)

# ndarray

assert_frame_equal((df == other.values), df.eq(other.values))
assert_frame_equal((df != other.values), df.ne(other.values))
assert_frame_equal((df > other.values), df.gt(other.values))
assert_frame_equal((df < other.values), df.lt(other.values))
assert_frame_equal((df >= other.values), df.ge(other.values))
assert_frame_equal((df <= other.values), df.le(other.values))

# list/tuple
_test_seq(df, idx_ser.values, col_ser.values)

# NA
df.ix[0, 0] = np.nan
rs = df.eq(df)
self.assert_(not rs.ix[0, 0])
rs = df.ne(df)
self.assert_(rs.ix[0, 0])
rs = df.gt(df)
self.assert_(not rs.ix[0, 0])
rs = df.lt(df)
self.assert_(not rs.ix[0, 0])
rs = df.ge(df)
self.assert_(not rs.ix[0, 0])
rs = df.le(df)
self.assert_(not rs.ix[0, 0])


# scalar
assert_frame_equal(df.eq(0), df == 0)
assert_frame_equal(df.ne(0), df != 0)
assert_frame_equal(df.gt(0), df > 0)
assert_frame_equal(df.lt(0), df < 0)
assert_frame_equal(df.ge(0), df >= 0)
assert_frame_equal(df.le(0), df <= 0)

assert_frame_equal(df.eq(np.nan), df == np.nan)
assert_frame_equal(df.ne(np.nan), df != np.nan)
assert_frame_equal(df.gt(np.nan), df > np.nan)
assert_frame_equal(df.lt(np.nan), df < np.nan)
assert_frame_equal(df.ge(np.nan), df >= np.nan)
assert_frame_equal(df.le(np.nan), df <= np.nan)

def test_arith_flex_series(self):
df = self.simple

Expand Down