Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
s1 = pd.Series([pd.NA, -1], dtype='Int64')
s2 = pd.Series([pd.NA, -1]) # the dtype is now object
Problem description
s1.fillna(np.nan)
and s2.fillna(np.nan)
return different series. Specifically, the first one keeps the pd.NA
cell untouched and does not replace it with np.nan
. Replacing with any other value that np.nan
does not trigger this bug.
Expected Output
> s2.fillna(np.nan)
0 NaN
1 -1.0
dtype: float64
Output of pd.show_versions()
INSTALLED VERSIONS
commit : f00ed8f
python : 3.8.5.final.0
python-bits : 64
OS : Linux
OS-release : 4.4.0-210-generic
Version : #242-Ubuntu SMP Fri Apr 16 09:57:56 UTC 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.3.0
numpy : 1.19.1
pytz : 2019.3
dateutil : 2.8.1
pip : 20.2.2
setuptools : 50.3.0
Cython : 0.29.17
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : 1.0.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.18.1
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.3.2
numexpr : 2.7.1
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.5.2
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None