Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
import pandas as pd
import numpy as np
N = 2000
df = pd.DataFrame({"A": [1] * N, "B": [np.nan, 1.0] * (N // 2)})
df = df.sort_values("A").set_index("A")
df["B"] = df.groupby("A")["B"].fillna(method="ffill")
Problem description
The groupby + fillna gets extremely slow increasing the N.
This is a regression from 1.0.5->1.1.0.
Note: if I remove the .set_index("A")
it's fast again.
Expected Output
Same output, just faster.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : d9fff27
python : 3.7.8.final.0
python-bits : 64
OS : Linux
OS-release : 4.4.110-1.el7.elrepo.x86_64
Version : #1 SMP Fri Jan 5 11:35:48 EST 2018
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.1.0
numpy : 1.19.1
pytz : 2020.1
dateutil : 2.8.1
pip : 20.2.3
setuptools : 49.6.0.post20200917
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None