Skip to content

numpy.mean(): accumulator default type should not be single precision (Trac #435) #1033

Closed
@numpy-gitbot

Description

@numpy-gitbot

Original ticket http://projects.scipy.org/numpy/ticket/435 on 2007-01-24 by @chanley, assigned to unknown.

The accumulator used in the mean algorithm should not be single precision by default. This default can cause unexpected results. Please see the following example:

In [5]: a.dtype
Out[5]: dtype('>f4')

In [6]: print a
[[ 132.  132.  132. ...,  132.  132.  132.]
 [ 132.  132.  132. ...,  132.  132.  132.]
 [ 132.  132.  132. ...,  132.  132.  132.]
 ..., 
 [ 132.  132.  132. ...,  132.  132.  132.]
 [ 132.  132.  132. ...,  132.  132.  132.]
 [ 132.  132.  132. ...,  132.  132.  132.]]

In [7]: a.min()
Out[7]: 132.0

In [8]: a.max()
Out[8]: 389.0

In [9]: a.mean()
Out[9]: 129.742439153

However, if you recast the array as float64 you get the correct result:

In [11]: a.astype(numpy.float64).mean()
Out[11]: 132.062805059

I believe that double precision would be a more appropriate default type for the accumulator.

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions