Personal AI Companion App - An intelligent assistant that captures, organizes, and manages ideas, notes, tasks, and conversations seamlessly. Features voice-based inputs, automatic summarization, task prioritization, and cross-platform sync for a productive, balanced life.
The Personal AI Companion App is a comprehensive productivity tool designed to be your intelligent digital assistant. It captures spontaneous ideas through voice input, automatically categorizes and summarizes content, refines large volumes of conversations into concise forms, and provides ongoing guidance for a productive, balanced lifestyle.
- โ Seamless Idea Capture - Tap-to-record ideas with automatic categorization
- โ Intelligent Organization - AI-powered summarization and task prioritization
- โ Conversation Management - Refine and organize large conversation histories
- โ Cross-Platform Sync - Android, web, Chrome extension, and desktop access
- โ Productivity Enhancement - Daily routines and motivational guidance
- โ Privacy-Focused - Local processing options for sensitive data
- Professionals - Capture ideas and manage tasks on the go
- Students - Organize notes and study materials efficiently
- Creatives - Capture inspiration and manage creative projects
- Busy Individuals - Streamline daily routines and productivity
- Remote Workers - Manage work-life balance with AI assistance
// Task management with AI prioritization
const TaskManager = () => {
const [tasks, setTasks] = useState([]);
const [priorities, setPriorities] = useState({});
const prioritizeTasks = async (tasks) => {
const response = await aiService.analyze({
type: 'task_prioritization',
data: tasks,
factors: ['urgency', 'deadlines', 'context', 'user_rules']
});
return response.prioritized_tasks;
};
return (
<div className="task-list">
{tasks.map(task => (
<TaskCard
key={task.id}
task={task}
priority={priorities[task.id]}
onComplete={handleTaskComplete}
/>
))}
</div>
);
};
Features:
- Smart Prioritization - AI-driven task ranking based on urgency and context
- Context Awareness - Considers meetings, deadlines, and user preferences
- Dynamic Updates - Real-time priority adjustments based on new information
- Visual Indicators - Color-coded priority levels and progress tracking
// Customizable folder system
const FolderManager = () => {
const [folders, setFolders] = useState([
{ id: 'ideas', name: 'Ideas', icon: '๐ก' },
{ id: 'projects', name: 'Projects', icon: '๐' },
{ id: 'daily-notes', name: 'Daily Notes', icon: '๐' }
]);
const addToFolder = async (content, folderId) => {
const processedContent = await aiService.categorize(content);
setFolders(prev => prev.map(folder =>
folder.id === folderId
? { ...folder, items: [...folder.items, processedContent] }
: folder
));
};
return (
<div className="folder-grid">
{folders.map(folder => (
<FolderCard
key={folder.id}
folder={folder}
onDrop={handleDrop}
onVoiceCommand={handleVoiceCommand}
/>
))}
</div>
);
};
// Central chat interface
const ChatBoard = () => {
const [conversations, setConversations] = useState([]);
const [currentChat, setCurrentChat] = useState(null);
const sendMessage = async (message, type = 'text') => {
const response = await aiService.process({
message,
type,
context: currentChat?.history,
attachments: currentChat?.files
});
setCurrentChat(prev => ({
...prev,
history: [...prev.history, { role: 'user', content: message }, { role: 'assistant', content: response }]
}));
};
return (
<div className="chat-board">
<ChatHistory conversations={conversations} onSelect={setCurrentChat} />
<ChatInput
onSend={sendMessage}
onVoiceInput={handleVoiceInput}
onFileUpload={handleFileUpload}
/>
<ChatDisplay chat={currentChat} />
</div>
);
};
// Voice input with automatic categorization
const VoiceInput = () => {
const [isRecording, setIsRecording] = useState(false);
const [transcription, setTranscription] = useState('');
const startRecording = async () => {
setIsRecording(true);
try {
const audioStream = await navigator.mediaDevices.getUserMedia({ audio: true });
const recognition = new SpeechRecognition();
recognition.onresult = async (event) => {
const transcript = event.results[0][0].transcript;
setTranscription(transcript);
// Auto-categorize based on content
const category = await aiService.categorize(transcript);
const action = await aiService.determineAction(transcript);
handleVoiceCommand(transcript, category, action);
};
recognition.start();
} catch (error) {
console.error('Voice recording failed:', error);
}
};
return (
<div className="voice-input">
<button
className={`record-button ${isRecording ? 'recording' : ''}`}
onClick={startRecording}
>
{isRecording ? '๐' : '๐ค'}
</button>
{transcription && (
<div className="transcription-preview">
{transcription}
</div>
)}
</div>
);
};
// AI-powered content categorization
const categorizeContent = async (content) => {
const categories = {
'idea': ['idea', 'concept', 'thought', 'inspiration'],
'task': ['todo', 'task', 'reminder', 'deadline'],
'note': ['note', 'information', 'fact', 'detail'],
'project': ['project', 'plan', 'goal', 'objective']
};
const response = await aiService.analyze({
type: 'categorization',
content,
categories,
context: 'user_preferences'
});
return {
category: response.category,
confidence: response.confidence,
tags: response.tags,
priority: response.priority
};
};
// Conversation summarization and organization
const ConversationManager = () => {
const [conversations, setConversations] = useState([]);
const refineConversation = async (conversationId) => {
const conversation = conversations.find(c => c.id === conversationId);
const refined = await aiService.refine({
type: 'conversation_refinement',
conversation: conversation.history,
options: {
summarize: true,
removeDuplicates: true,
groupTopics: true,
cleanSystemMessages: true
}
});
setConversations(prev => prev.map(c =>
c.id === conversationId
? { ...c, refined: refined, originalLength: c.history.length }
: c
));
};
const convertLargeHistory = async (conversations) => {
// Convert 100+ conversations to 10-20 organized threads
const response = await aiService.process({
type: 'conversation_condensation',
conversations,
targetCount: 15,
preserveKeyInfo: true
});
return response.organized_threads;
};
return (
<div className="conversation-manager">
<ConversationList conversations={conversations} onRefine={refineConversation} />
<RefinementOptions onConvert={convertLargeHistory} />
</div>
);
};
// File and image handling
const MultimediaHandler = () => {
const [attachments, setAttachments] = useState([]);
const handleFileUpload = async (file) => {
const processedFile = await processFile(file);
setAttachments(prev => [...prev, processedFile]);
// Analyze file content for context
const analysis = await aiService.analyze({
type: 'file_analysis',
file: processedFile,
extractText: true,
generateSummary: true
});
return analysis;
};
const processFile = async (file) => {
const supportedTypes = {
'pdf': processPDF,
'image': processImage,
'document': processDocument,
'audio': processAudio
};
const processor = supportedTypes[file.type];
return processor ? await processor(file) : file;
};
return (
<div className="multimedia-handler">
<FileUpload onUpload={handleFileUpload} />
<AttachmentList attachments={attachments} />
</div>
);
};
// Context-aware AI decisions
const AIDecisionEngine = () => {
const makeDecision = async (input, context) => {
const decision = await aiService.decide({
input,
context: {
user_history: context.history,
current_time: new Date(),
user_preferences: context.preferences,
recent_activities: context.activities
},
options: {
auto_categorize: true,
suggest_actions: true,
prioritize_content: true
}
});
return decision;
};
const detectContext = (speech) => {
const contextKeywords = {
'idea': ['idea', 'thought', 'concept'],
'task': ['todo', 'reminder', 'deadline'],
'note': ['note', 'information', 'fact']
};
return aiService.detectContext(speech, contextKeywords);
};
return { makeDecision, detectContext };
};
// Automated daily planning
const DailyPlanner = () => {
const generateDailyPlan = async () => {
const today = new Date();
const yesterday = new Date(today.getTime() - 24 * 60 * 60 * 1000);
// Analyze yesterday's activities
const yesterdayAnalysis = await aiService.analyze({
type: 'daily_summary',
date: yesterday,
data: await getDailyData(yesterday)
});
// Generate today's plan
const todayPlan = await aiService.generate({
type: 'daily_plan',
context: {
yesterday_summary: yesterdayAnalysis,
pending_tasks: await getPendingTasks(),
scheduled_events: await getScheduledEvents(),
user_goals: await getUserGoals()
}
});
return todayPlan;
};
return (
<div className="daily-planner">
<DailySummary />
<TaskPrioritization />
<ScheduleOptimization />
</div>
);
};
// Background processing every 6 hours
const BackgroundProcessor = () => {
const processBackground = async () => {
const interval = 6 * 60 * 60 * 1000; // 6 hours
setInterval(async () => {
const analysis = await aiService.analyze({
type: 'background_analysis',
data: await getAllUserData(),
generate_notifications: true,
suggest_improvements: true
});
// Send proactive notifications
if (analysis.notifications.length > 0) {
await sendNotifications(analysis.notifications);
}
// Update user insights
await updateUserInsights(analysis.insights);
}, interval);
};
const generateNotifications = async (analysis) => {
const notifications = [];
// Task reminders
if (analysis.pendingTasks.length > 0) {
notifications.push({
type: 'task_reminder',
message: `You have ${analysis.pendingTasks.length} pending tasks`,
priority: 'medium'
});
}
// Motivational prompts
if (analysis.userPatterns.needsMotivation) {
notifications.push({
type: 'motivation',
message: "Get up, drink some water, and crack on with work to stay fit and productive!",
priority: 'low'
});
}
return notifications;
};
return { processBackground, generateNotifications };
};
graph TD
A[User Input] --> B[Voice/Text Processing]
B --> C[AI Analysis]
C --> D[Content Organization]
D --> E[Storage & Sync]
E --> F[Cross-Platform Access]
G[Background AI] --> H[Periodic Analysis]
H --> I[Notifications]
H --> J[Insights]
K[External Tools] --> L[Calendar Integration]
K --> M[Note Apps]
K --> N[Productivity Tools]
{
"mobile": "React Native",
"web": "React.js",
"extension": "Chrome Extension API",
"desktop": "Electron",
"ui_framework": "Tailwind CSS",
"state_management": "Redux Toolkit",
"real_time": "WebSockets"
}
{
"runtime": "Node.js",
"framework": "Express.js",
"database": "Firebase Firestore",
"ai_services": [
"OpenAI GPT-4",
"Google Cloud Speech-to-Text",
"Custom NLP models"
],
"storage": "Firebase Storage",
"authentication": "Firebase Auth"
}
{
"speech_recognition": "Web Speech API + Google Cloud STT",
"natural_language_processing": "OpenAI GPT-4 + Custom models",
"text_summarization": "GPT-4 + BART",
"sentiment_analysis": "Custom models",
"content_categorization": "Fine-tuned BERT",
"task_prioritization": "Reinforcement learning"
}
- Voice input and transcription system
- Basic AI categorization and summarization
- Task management and prioritization
- Cross-platform sync foundation
- Conversation refinement and organization
- Background AI processing
- Daily planning and insights
- Motivational notifications
- Chrome extension development
- Desktop app with Electron
- Advanced multimedia handling
- External tool integrations
- Performance optimization
- User testing and feedback
- Security and privacy enhancements
- App store deployment
{
"react-native": "^0.72.0",
"react": "^18.2.0",
"react-dom": "^18.2.0",
"tailwindcss": "^3.3.0",
"redux-toolkit": "^1.9.0",
"react-redux": "^8.1.0",
"socket.io-client": "^4.7.0"
}
{
"express": "^4.18.0",
"firebase-admin": "^11.10.0",
"openai": "^4.0.0",
"socket.io": "^4.7.0",
"node-cron": "^3.0.0",
"multer": "^1.4.5"
}
{
"@google-cloud/speech": "^5.6.0",
"natural": "^6.8.0",
"compromise": "^14.9.0",
"sentiment": "^5.0.2",
"node-nlp": "^4.27.0"
}
- Node.js 18+
- React Native development environment
- Firebase project
- OpenAI API key
- Google Cloud Speech-to-Text API
-
Clone the Repository
git clone https://github.com/your-username/personal-ai-companion-app.git cd personal-ai-companion-app
-
Install Dependencies
# Install backend dependencies cd backend npm install # Install mobile app dependencies cd ../mobile npm install # Install web app dependencies cd ../web npm install
-
Set Up Environment Variables
cp .env.example .env # Edit .env with your API keys and Firebase config
-
Start Development Servers
# Start backend server cd backend npm run dev # Start mobile app cd ../mobile npx react-native run-android # Start web app cd ../web npm start
// Example: Voice input and categorization
import { VoiceInput, AIService } from '@companion-app/core';
const voiceInput = new VoiceInput();
const aiService = new AIService();
voiceInput.onRecordingComplete = async (transcript) => {
const category = await aiService.categorize(transcript);
const task = await aiService.createTask(transcript, category);
console.log('Created task:', task);
};
POST /api/voice/transcribe
Content-Type: multipart/form-data
{
"audio": "audio_file",
"language": "en-US"
}
POST /api/content/categorize
Content-Type: application/json
{
"content": "string",
"type": "voice|text|file"
}
POST /api/tasks/create
Content-Type: application/json
{
"title": "string",
"description": "string",
"priority": "high|medium|low",
"category": "string"
}
POST /api/conversations/refine
Content-Type: application/json
{
"conversation_id": "string",
"options": {
"summarize": true,
"remove_duplicates": true,
"group_topics": true
}
}
// React Native main screen
const MainScreen = () => (
<SafeAreaView style={styles.container}>
<Header />
<TabNavigator>
<Tab.Screen name="Home" component={HomeScreen} />
<Tab.Screen name="Tasks" component={TaskScreen} />
<Tab.Screen name="Chat" component={ChatScreen} />
<Tab.Screen name="Profile" component={ProfileScreen} />
</TabNavigator>
<VoiceInputButton />
</SafeAreaView>
);
// React web dashboard
const Dashboard = () => (
<div className="dashboard">
<Sidebar>
<Navigation />
<QuickActions />
</Sidebar>
<MainContent>
<DailySummary />
<TaskList />
<ChatBoard />
</MainContent>
<VoiceWidget />
</div>
);
// Encryption for sensitive data
import { encrypt, decrypt } from '@companion-app/security';
const secureStorage = {
save: async (key, data) => {
const encrypted = await encrypt(data);
await AsyncStorage.setItem(key, encrypted);
},
load: async (key) => {
const encrypted = await AsyncStorage.getItem(key);
return encrypted ? await decrypt(encrypted) : null;
}
};
- Local Processing - Option to process data locally
- Data Encryption - End-to-end encryption for all data
- User Control - Complete control over data retention
- GDPR Compliance - Full compliance with privacy regulations
- Daily Active Users - Track app usage patterns
- Voice Input Accuracy - Measure transcription quality
- Task Completion Rate - Monitor productivity improvements
- User Retention - Track long-term engagement
- Categorization Accuracy - Measure AI classification quality
- Summarization Quality - Evaluate content condensation
- Response Time - Monitor AI processing speed
- User Satisfaction - Collect feedback on AI suggestions
# .github/workflows/mobile-deploy.yml
name: Deploy Mobile App
on:
push:
branches: [main]
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup React Native
uses: react-native-community/setup-react-native@v1
- name: Build Android
run: cd mobile && ./gradlew assembleRelease
- name: Upload to Play Store
uses: r0adkll/upload-google-play@v1
# .github/workflows/web-deploy.yml
name: Deploy Web App
on:
push:
branches: [main]
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Node.js
uses: actions/setup-node@v3
with:
node-version: '18'
- name: Install dependencies
run: cd web && npm ci
- name: Build
run: cd web && npm run build
- name: Deploy to Vercel
uses: amondnet/vercel-action@v20
- Advanced voice commands and natural language processing
- Integration with smart home devices
- Advanced analytics and insights dashboard
- Team collaboration features
- AI-powered content generation
- Personalized AI models for each user
- Advanced conversation understanding
- Predictive task scheduling
- Emotional intelligence features
- Multi-language support
- Documentation: docs.companion-app.com
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Email: [email protected]
We welcome contributions! Please see our Contributing Guidelines for details.
- Discord: Join our community
- Twitter: @CompanionApp
- Blog: Latest updates and tips
This project is licensed under the MIT License - see the LICENSE file for details.
- Built with โค๏ธ by the Personal AI Companion App team
- Powered by OpenAI GPT-4 for intelligent assistance
- Supported by the React Native and Firebase communities
- Inspired by the need for better productivity tools
Transform your productivity with Personal AI Companion App.
Your intelligent assistant for a balanced, productive life. ๐