You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository was archived by the owner on Nov 17, 2023. It is now read-only.
Could you give me some direction (or example) how to use Deconvolution layer for such image segmentation task as follows:
I have a collection of n training volume images (t+xy) and their associative segmentation
(n, 64, 128, 128) ~> (n, 64, 128, 128)
where n is number of training instances, 64 is the temporal dimension, 128 is the spatial dimension.
How to construct a simple fully convolutional network using mxnet on this problem? data ~> convolutional layer ~> pooling (downsample by 2) ~> deconvolutional layer ~> Upsampling by 2 ~> segmentation?