-
Notifications
You must be signed in to change notification settings - Fork 250
Add algebra morphism identity and composition constructions #1502
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
5f8e2e5
Lattice: provide and and or semigroups
Taneb e73f1d6
Add Algebra.Morphism.Construct.Identity
Taneb 078e939
Add Algebra.Morphism.Construct.Composition
Taneb 080c5c5
Update changelog
Taneb d215115
Addressed feedback
MatthewDaggitt f390255
Merge branch 'master' into algebra-construct
MatthewDaggitt File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,305 @@ | ||
------------------------------------------------------------------------ | ||
-- The Agda standard library | ||
-- | ||
-- The composition of morphisms between algebraic structures. | ||
------------------------------------------------------------------------ | ||
|
||
{-# OPTIONS --safe --without-K #-} | ||
|
||
module Algebra.Morphism.Construct.Composition where | ||
|
||
open import Algebra.Bundles | ||
open import Algebra.Morphism.Structures | ||
open import Data.Product | ||
open import Function.Base using (_∘_) | ||
import Function.Construct.Composition as Func | ||
open import Level using (Level) | ||
open import Relation.Binary.Morphism.Construct.Composition | ||
open import Relation.Binary.Definitions using (Transitive) | ||
|
||
private | ||
variable | ||
a b c ℓ₁ ℓ₂ ℓ₃ : Level | ||
|
||
------------------------------------------------------------------------ | ||
-- Magmas | ||
|
||
module _ {M₁ : RawMagma a ℓ₁} | ||
{M₂ : RawMagma b ℓ₂} | ||
{M₃ : RawMagma c ℓ₃} | ||
(open RawMagma) | ||
(≈₃-trans : Transitive (_≈_ M₃)) | ||
{f : Carrier M₁ → Carrier M₂} | ||
{g : Carrier M₂ → Carrier M₃} | ||
where | ||
|
||
isMagmaHomomorphism | ||
: IsMagmaHomomorphism M₁ M₂ f | ||
→ IsMagmaHomomorphism M₂ M₃ g | ||
→ IsMagmaHomomorphism M₁ M₃ (g ∘ f) | ||
isMagmaHomomorphism f-homo g-homo = record | ||
{ isRelHomomorphism = isRelHomomorphism F.isRelHomomorphism G.isRelHomomorphism | ||
; homo = λ x y → ≈₃-trans (G.⟦⟧-cong (F.homo x y)) (G.homo (f x) (f y)) | ||
} where module F = IsMagmaHomomorphism f-homo; module G = IsMagmaHomomorphism g-homo | ||
|
||
isMagmaMonomorphism | ||
: IsMagmaMonomorphism M₁ M₂ f | ||
→ IsMagmaMonomorphism M₂ M₃ g | ||
→ IsMagmaMonomorphism M₁ M₃ (g ∘ f) | ||
isMagmaMonomorphism f-mono g-mono = record | ||
{ isMagmaHomomorphism = isMagmaHomomorphism F.isMagmaHomomorphism G.isMagmaHomomorphism | ||
; injective = F.injective ∘ G.injective | ||
} where module F = IsMagmaMonomorphism f-mono; module G = IsMagmaMonomorphism g-mono | ||
|
||
isMagmaIsomorphism | ||
: IsMagmaIsomorphism M₁ M₂ f | ||
→ IsMagmaIsomorphism M₂ M₃ g | ||
→ IsMagmaIsomorphism M₁ M₃ (g ∘ f) | ||
isMagmaIsomorphism f-iso g-iso = record | ||
{ isMagmaMonomorphism = isMagmaMonomorphism F.isMagmaMonomorphism G.isMagmaMonomorphism | ||
; surjective = Func.surjective (_≈_ M₁) _ _ ≈₃-trans G.⟦⟧-cong F.surjective G.surjective | ||
} where module F = IsMagmaIsomorphism f-iso; module G = IsMagmaIsomorphism g-iso | ||
|
||
|
||
------------------------------------------------------------------------ | ||
-- Monoids | ||
|
||
module _ {M₁ : RawMonoid a ℓ₁} | ||
{M₂ : RawMonoid b ℓ₂} | ||
{M₃ : RawMonoid c ℓ₃} | ||
(open RawMonoid) | ||
(≈₃-trans : Transitive (_≈_ M₃)) | ||
{f : Carrier M₁ → Carrier M₂} | ||
{g : Carrier M₂ → Carrier M₃} | ||
where | ||
|
||
isMonoidHomomorphism | ||
: IsMonoidHomomorphism M₁ M₂ f | ||
→ IsMonoidHomomorphism M₂ M₃ g | ||
→ IsMonoidHomomorphism M₁ M₃ (g ∘ f) | ||
isMonoidHomomorphism f-homo g-homo = record | ||
{ isMagmaHomomorphism = isMagmaHomomorphism ≈₃-trans F.isMagmaHomomorphism G.isMagmaHomomorphism | ||
; ε-homo = ≈₃-trans (G.⟦⟧-cong F.ε-homo) G.ε-homo | ||
} where module F = IsMonoidHomomorphism f-homo; module G = IsMonoidHomomorphism g-homo | ||
|
||
isMonoidMonomorphism | ||
: IsMonoidMonomorphism M₁ M₂ f | ||
→ IsMonoidMonomorphism M₂ M₃ g | ||
→ IsMonoidMonomorphism M₁ M₃ (g ∘ f) | ||
isMonoidMonomorphism f-mono g-mono = record | ||
{ isMonoidHomomorphism = isMonoidHomomorphism F.isMonoidHomomorphism G.isMonoidHomomorphism | ||
; injective = F.injective ∘ G.injective | ||
} where module F = IsMonoidMonomorphism f-mono; module G = IsMonoidMonomorphism g-mono | ||
|
||
isMonoidIsomorphism | ||
: IsMonoidIsomorphism M₁ M₂ f | ||
→ IsMonoidIsomorphism M₂ M₃ g | ||
→ IsMonoidIsomorphism M₁ M₃ (g ∘ f) | ||
isMonoidIsomorphism f-iso g-iso = record | ||
{ isMonoidMonomorphism = isMonoidMonomorphism F.isMonoidMonomorphism G.isMonoidMonomorphism | ||
; surjective = Func.surjective (_≈_ M₁) _ _ ≈₃-trans G.⟦⟧-cong F.surjective G.surjective | ||
} where module F = IsMonoidIsomorphism f-iso; module G = IsMonoidIsomorphism g-iso | ||
|
||
|
||
------------------------------------------------------------------------ | ||
-- Groups | ||
|
||
module _ {G₁ : RawGroup a ℓ₁} | ||
{G₂ : RawGroup b ℓ₂} | ||
{G₃ : RawGroup c ℓ₃} | ||
(open RawGroup) | ||
(≈₃-trans : Transitive (_≈_ G₃)) | ||
{f : Carrier G₁ → Carrier G₂} | ||
{g : Carrier G₂ → Carrier G₃} | ||
where | ||
|
||
|
||
isGroupHomomorphism | ||
: IsGroupHomomorphism G₁ G₂ f | ||
→ IsGroupHomomorphism G₂ G₃ g | ||
→ IsGroupHomomorphism G₁ G₃ (g ∘ f) | ||
isGroupHomomorphism f-homo g-homo = record | ||
{ isMonoidHomomorphism = isMonoidHomomorphism ≈₃-trans F.isMonoidHomomorphism G.isMonoidHomomorphism | ||
; ⁻¹-homo = λ x → ≈₃-trans (G.⟦⟧-cong (F.⁻¹-homo x)) (G.⁻¹-homo (f x)) | ||
} where module F = IsGroupHomomorphism f-homo; module G = IsGroupHomomorphism g-homo | ||
|
||
isGroupMonomorphism | ||
: IsGroupMonomorphism G₁ G₂ f | ||
→ IsGroupMonomorphism G₂ G₃ g | ||
→ IsGroupMonomorphism G₁ G₃ (g ∘ f) | ||
isGroupMonomorphism f-mono g-mono = record | ||
{ isGroupHomomorphism = isGroupHomomorphism F.isGroupHomomorphism G.isGroupHomomorphism | ||
; injective = F.injective ∘ G.injective | ||
} where module F = IsGroupMonomorphism f-mono; module G = IsGroupMonomorphism g-mono | ||
|
||
isGroupIsomorphism | ||
: IsGroupIsomorphism G₁ G₂ f | ||
→ IsGroupIsomorphism G₂ G₃ g | ||
→ IsGroupIsomorphism G₁ G₃ (g ∘ f) | ||
isGroupIsomorphism f-iso g-iso = record | ||
{ isGroupMonomorphism = isGroupMonomorphism F.isGroupMonomorphism G.isGroupMonomorphism | ||
; surjective = Func.surjective (_≈_ G₁) _ _ ≈₃-trans G.⟦⟧-cong F.surjective G.surjective | ||
} where module F = IsGroupIsomorphism f-iso; module G = IsGroupIsomorphism g-iso | ||
|
||
|
||
------------------------------------------------------------------------ | ||
-- Near semirings | ||
|
||
module _ {R₁ : RawNearSemiring a ℓ₁} | ||
{R₂ : RawNearSemiring b ℓ₂} | ||
{R₃ : RawNearSemiring c ℓ₃} | ||
(open RawNearSemiring) | ||
(≈₃-trans : Transitive (_≈_ R₃)) | ||
{f : Carrier R₁ → Carrier R₂} | ||
{g : Carrier R₂ → Carrier R₃} | ||
where | ||
|
||
isNearSemiringHomomorphism | ||
: IsNearSemiringHomomorphism R₁ R₂ f | ||
→ IsNearSemiringHomomorphism R₂ R₃ g | ||
→ IsNearSemiringHomomorphism R₁ R₃ (g ∘ f) | ||
isNearSemiringHomomorphism f-homo g-homo = record | ||
{ +-isMonoidHomomorphism = isMonoidHomomorphism ≈₃-trans F.+-isMonoidHomomorphism G.+-isMonoidHomomorphism | ||
; *-isMagmaHomomorphism = isMagmaHomomorphism ≈₃-trans F.*-isMagmaHomomorphism G.*-isMagmaHomomorphism | ||
} where module F = IsNearSemiringHomomorphism f-homo; module G = IsNearSemiringHomomorphism g-homo | ||
|
||
isNearSemiringMonomorphism | ||
: IsNearSemiringMonomorphism R₁ R₂ f | ||
→ IsNearSemiringMonomorphism R₂ R₃ g | ||
→ IsNearSemiringMonomorphism R₁ R₃ (g ∘ f) | ||
isNearSemiringMonomorphism f-mono g-mono = record | ||
{ isNearSemiringHomomorphism = isNearSemiringHomomorphism F.isNearSemiringHomomorphism G.isNearSemiringHomomorphism | ||
; injective = F.injective ∘ G.injective | ||
} where module F = IsNearSemiringMonomorphism f-mono; module G = IsNearSemiringMonomorphism g-mono | ||
|
||
isNearSemiringIsomorphism | ||
: IsNearSemiringIsomorphism R₁ R₂ f | ||
→ IsNearSemiringIsomorphism R₂ R₃ g | ||
→ IsNearSemiringIsomorphism R₁ R₃ (g ∘ f) | ||
isNearSemiringIsomorphism f-iso g-iso = record | ||
{ isNearSemiringMonomorphism = isNearSemiringMonomorphism F.isNearSemiringMonomorphism G.isNearSemiringMonomorphism | ||
; surjective = Func.surjective (_≈_ R₁) _ _ ≈₃-trans G.⟦⟧-cong F.surjective G.surjective | ||
} where module F = IsNearSemiringIsomorphism f-iso; module G = IsNearSemiringIsomorphism g-iso | ||
|
||
|
||
------------------------------------------------------------------------ | ||
-- Semirings | ||
|
||
module _ | ||
{R₁ : RawSemiring a ℓ₁} | ||
{R₂ : RawSemiring b ℓ₂} | ||
{R₃ : RawSemiring c ℓ₃} | ||
(open RawSemiring) | ||
(≈₃-trans : Transitive (_≈_ R₃)) | ||
{f : Carrier R₁ → Carrier R₂} | ||
{g : Carrier R₂ → Carrier R₃} | ||
where | ||
|
||
|
||
isSemiringHomomorphism | ||
: IsSemiringHomomorphism R₁ R₂ f | ||
→ IsSemiringHomomorphism R₂ R₃ g | ||
→ IsSemiringHomomorphism R₁ R₃ (g ∘ f) | ||
isSemiringHomomorphism f-homo g-homo = record | ||
{ +-isMonoidHomomorphism = isMonoidHomomorphism ≈₃-trans F.+-isMonoidHomomorphism G.+-isMonoidHomomorphism | ||
; *-isMonoidHomomorphism = isMonoidHomomorphism ≈₃-trans F.*-isMonoidHomomorphism G.*-isMonoidHomomorphism | ||
} where module F = IsSemiringHomomorphism f-homo; module G = IsSemiringHomomorphism g-homo | ||
|
||
isSemiringMonomorphism | ||
: IsSemiringMonomorphism R₁ R₂ f | ||
→ IsSemiringMonomorphism R₂ R₃ g | ||
→ IsSemiringMonomorphism R₁ R₃ (g ∘ f) | ||
isSemiringMonomorphism f-mono g-mono = record | ||
{ isSemiringHomomorphism = isSemiringHomomorphism F.isSemiringHomomorphism G.isSemiringHomomorphism | ||
; injective = F.injective ∘ G.injective | ||
} where module F = IsSemiringMonomorphism f-mono; module G = IsSemiringMonomorphism g-mono | ||
|
||
isSemiringIsomorphism | ||
: IsSemiringIsomorphism R₁ R₂ f | ||
→ IsSemiringIsomorphism R₂ R₃ g | ||
→ IsSemiringIsomorphism R₁ R₃ (g ∘ f) | ||
isSemiringIsomorphism f-iso g-iso = record | ||
{ isSemiringMonomorphism = isSemiringMonomorphism F.isSemiringMonomorphism G.isSemiringMonomorphism | ||
; surjective = Func.surjective (_≈_ R₁) _ _ ≈₃-trans G.⟦⟧-cong F.surjective G.surjective | ||
} where module F = IsSemiringIsomorphism f-iso; module G = IsSemiringIsomorphism g-iso | ||
|
||
|
||
------------------------------------------------------------------------ | ||
-- Rings | ||
|
||
module _ {R₁ : RawRing a ℓ₁} | ||
{R₂ : RawRing b ℓ₂} | ||
{R₃ : RawRing c ℓ₃} | ||
(open RawRing) | ||
(≈₃-trans : Transitive (_≈_ R₃)) | ||
{f : Carrier R₁ → Carrier R₂} | ||
{g : Carrier R₂ → Carrier R₃} | ||
where | ||
|
||
|
||
isRingHomomorphism | ||
: IsRingHomomorphism R₁ R₂ f | ||
→ IsRingHomomorphism R₂ R₃ g | ||
→ IsRingHomomorphism R₁ R₃ (g ∘ f) | ||
isRingHomomorphism f-homo g-homo = record | ||
{ +-isGroupHomomorphism = isGroupHomomorphism ≈₃-trans F.+-isGroupHomomorphism G.+-isGroupHomomorphism | ||
; *-isMonoidHomomorphism = isMonoidHomomorphism ≈₃-trans F.*-isMonoidHomomorphism G.*-isMonoidHomomorphism | ||
} where module F = IsRingHomomorphism f-homo; module G = IsRingHomomorphism g-homo | ||
|
||
isRingMonomorphism | ||
: IsRingMonomorphism R₁ R₂ f | ||
→ IsRingMonomorphism R₂ R₃ g | ||
→ IsRingMonomorphism R₁ R₃ (g ∘ f) | ||
isRingMonomorphism f-mono g-mono = record | ||
{ isRingHomomorphism = isRingHomomorphism F.isRingHomomorphism G.isRingHomomorphism | ||
; injective = F.injective ∘ G.injective | ||
} where module F = IsRingMonomorphism f-mono; module G = IsRingMonomorphism g-mono | ||
|
||
isRingIsomorphism | ||
: IsRingIsomorphism R₁ R₂ f | ||
→ IsRingIsomorphism R₂ R₃ g | ||
→ IsRingIsomorphism R₁ R₃ (g ∘ f) | ||
isRingIsomorphism f-iso g-iso = record | ||
{ isRingMonomorphism = isRingMonomorphism F.isRingMonomorphism G.isRingMonomorphism | ||
; surjective = Func.surjective (_≈_ R₁) _ _ ≈₃-trans G.⟦⟧-cong F.surjective G.surjective | ||
} where module F = IsRingIsomorphism f-iso; module G = IsRingIsomorphism g-iso | ||
|
||
|
||
------------------------------------------------------------------------ | ||
-- Lattices | ||
|
||
module _ {L₁ : RawLattice a ℓ₁} | ||
{L₂ : RawLattice b ℓ₂} | ||
{L₃ : RawLattice c ℓ₃} | ||
(open RawLattice) | ||
(≈₃-trans : Transitive (_≈_ L₃)) | ||
{f : Carrier L₁ → Carrier L₂} | ||
{g : Carrier L₂ → Carrier L₃} | ||
where | ||
|
||
isLatticeHomomorphism | ||
: IsLatticeHomomorphism L₁ L₂ f | ||
→ IsLatticeHomomorphism L₂ L₃ g | ||
→ IsLatticeHomomorphism L₁ L₃ (g ∘ f) | ||
isLatticeHomomorphism f-homo g-homo = record | ||
{ ∧-isMagmaHomomorphism = isMagmaHomomorphism ≈₃-trans F.∧-isMagmaHomomorphism G.∧-isMagmaHomomorphism | ||
; ∨-isMagmaHomomorphism = isMagmaHomomorphism ≈₃-trans F.∨-isMagmaHomomorphism G.∨-isMagmaHomomorphism | ||
} where module F = IsLatticeHomomorphism f-homo; module G = IsLatticeHomomorphism g-homo | ||
|
||
isLatticeMonomorphism | ||
: IsLatticeMonomorphism L₁ L₂ f | ||
→ IsLatticeMonomorphism L₂ L₃ g | ||
→ IsLatticeMonomorphism L₁ L₃ (g ∘ f) | ||
isLatticeMonomorphism f-mono g-mono = record | ||
{ isLatticeHomomorphism = isLatticeHomomorphism F.isLatticeHomomorphism G.isLatticeHomomorphism | ||
; injective = F.injective ∘ G.injective | ||
} where module F = IsLatticeMonomorphism f-mono; module G = IsLatticeMonomorphism g-mono | ||
|
||
isLatticeIsomorphism | ||
: IsLatticeIsomorphism L₁ L₂ f | ||
→ IsLatticeIsomorphism L₂ L₃ g | ||
→ IsLatticeIsomorphism L₁ L₃ (g ∘ f) | ||
isLatticeIsomorphism f-iso g-iso = record | ||
{ isLatticeMonomorphism = isLatticeMonomorphism F.isLatticeMonomorphism G.isLatticeMonomorphism | ||
; surjective = Func.surjective (_≈_ L₁) _ _ ≈₃-trans G.⟦⟧-cong F.surjective G.surjective | ||
} where module F = IsLatticeIsomorphism f-iso; module G = IsLatticeIsomorphism g-iso |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.