scREBOUND is a pretrained single-cell foundation model that generate cell embedding for multi-purpose downstream tasks.
python >= 3.12
anndata >= 0.11.4
sklearn >= 1.5.2
numpy >= 2.0.1
scanpy >= 1.11.1
pytorch == 2.5.0+cu124
flash-attn == 2.7.4.post1
./eval_adata/
stores the evaluation anndata, the download link./model_statedict/
stores the trained scREBOUND model, the download link./script_preprocess/
stores the preprocessing scripts for the training data./script_train/
stores the training scripts for scREBOUND./src/
stores the source code of scREBOUND./script_infer.py
is the cell embedding inference script using the pretrained foundation model
python script_infer.py --config [config_file.yaml]
The config_file.yaml
stores the configuration of the inference, which include the key parameters:
- seed: the random seed
- device: running device
- model_dir: the directory of the model state dict
- data_dir: the directory of the evaluation dataset
- output_dir: the output directory
See
config_pancreas.yaml
for the example setting on pancreas evaluation dataset.