Skip to content

Transcendental-Programmer/Anomaly-detection-in-IoT-streams

Repository files navigation

Anomaly Detection in IoT Streams - Project Plan

Table of Contents

  1. Project Overview
  2. Technology Stack
  3. Directory Structure
  4. Detailed Implementation Plan
  5. Dataset Selection
  6. Building the Project: Step-by-Step Instructions
  7. Additional Resources

Project Overview

Anomaly Detection in IoT Streams aims to identify unusual patterns or behaviors in data generated by IoT devices. Detecting anomalies is crucial for maintaining the integrity, security, and efficiency of IoT systems.


Technology Stack

Programming Language

  • Python: Primary language for data processing, machine learning, and backend services.

Machine Learning Frameworks

  • scikit-learn: For traditional ML algorithms.
  • TensorFlow / PyTorch: For deep learning models, if needed.

Data Processing

  • Pandas: Data manipulation and analysis.
  • NumPy: Numerical computations.

Stream Processing

  • Apache Kafka: Real-time data streaming.
  • Apache Spark Streaming: Real-time data processing.

MLOps Tools

  • Docker: Containerization of services.
  • Kubernetes: Orchestration of containerized applications.
  • MLflow: Experiment tracking and model management.
  • GitHub Actions: CI/CD pipelines.

Database

  • InfluxDB: Time-series database for IoT data.
  • PostgreSQL: For storing metadata and model information.

Visualization

  • Grafana: Dashboarding and visualization of metrics.
  • Plotly / Dash: Interactive data visualization.

Version Control

  • Git: Source code management.
  • DVC (Data Version Control): Data and model versioning.

Directory Structure

Anomaly-detection-in-IoT-streams/
├── data/
│   ├── raw/
│   ├── processed/
│   └── external/
├── notebooks/
│   ├── EDA.ipynb
│   └── Model_Training.ipynb
├── src/
│   ├── data/
│   │   ├── load_data.py
│   │   └── preprocess.py
│   ├── models/
│   │   ├── train_model.py
│   │   └── predict.py
│   ├── utils/
│   │   └── helpers.py
│   └── main.py
├── config/
│   └── config.yaml
├── tests/
│   ├── test_data.py
│   ├── test_models.py
│   └── test_utils.py
├── docker/
│   ├── Dockerfile
│   └── docker-compose.yaml
├── scripts/
│   └── deploy.sh
├── mlruns/
├── .gitignore
├── README.md
├── requirements.txt
└── setup.py

Detailed Implementation Plan

1. Project Setup

  • Initialize a Git repository.
  • Set up the Python environment using virtualenv or conda.
  • Create the directory structure as outlined above.
  • Define project configurations in config/config.yaml.

2. Data Collection & Ingestion

  • Data Sources: Identify IoT devices and data sources.
  • Streaming Setup: Configure Apache Kafka for real-time data ingestion.
  • Storage: Store raw data in data/raw/.

3. Data Preprocessing

  • Cleaning: Handle missing values, outliers.
  • Transformation: Normalize/scale data, feature engineering.
  • Storage: Save processed data in data/processed/.

4. Exploratory Data Analysis (EDA)

  • Use Jupyter notebooks to perform EDA.
  • Visualize data distributions, correlations, and temporal patterns.

5. Model Development

  • Training: Develop and train ML models for anomaly detection.
    • Examples: Isolation Forest, Autoencoders, LSTM-based models.
  • Evaluation: Assess model performance using metrics like Precision, Recall, F1-Score.
  • Selection: Choose the best-performing model.

6. Model Deployment

  • Containerize the application using Docker.
  • Use Kubernetes for orchestrating containers.
  • Implement REST APIs for model inference using frameworks like FastAPI or Flask.

7. MLOps Integration

  • CI/CD: Set up GitHub Actions for automated testing and deployment.
  • Experiment Tracking: Use MLflow to track experiments and manage models.
  • Monitoring: Use Grafana and Prometheus to monitor system and model performance.

8. Visualization & Dashboarding

  • Develop dashboards to visualize real-time anomaly detection results.
  • Provide insights and alerts for detected anomalies.

9. Testing

  • Write unit and integration tests for data processing, model training, and API endpoints.
  • Ensure code quality and reliability.

10. Documentation

  • Maintain comprehensive documentation in README.md.
  • Document APIs and usage instructions.

Dataset Selection

Recommended Datasets

  1. Kaggle IoT Datasets:

  2. UCI Machine Learning Repository:

  3. Yahoo Webscope:

  4. Custom Dataset:

    • If existing datasets do not fit your use case, consider collecting data from IoT devices relevant to your application.

Dataset Features

Ensure that the chosen dataset includes:

  • Time-series data: Timestamped sensor readings.
  • Multi-dimensional features: Multiple sensor metrics.
  • Labeled anomalies: For supervised learning, if available.

Building the Project: Step-by-Step Instructions

Step 1: Clone the Repository

git clone https://github.com/yourusername/Anomaly-detection-in-IoT-streams.git
cd Anomaly-detection-in-IoT-streams

Step 2: Set Up the Environment

Create a virtual environment and install dependencies.

python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

Step 3: Configure Streaming Services

Apache Kafka

  1. Install Kafka:

    Follow the Kafka Quickstart to install and start Kafka.

  2. Create Topics:

    kafka-topics.sh --create --topic iot-data --bootstrap-server localhost:9092 --partitions 3 --replication-factor 1

Step 4: Data Ingestion

Develop a producer script to simulate IoT data or connect to actual IoT devices.

# src/data/load_data.py
import kafka
import json
import time
import random

def produce_iot_data():
    producer = kafka.KafkaProducer(bootstrap_servers='localhost:9092',
                                   value_serializer=lambda v: json.dumps(v).encode('utf-8'))
    while True:
        data = {
            'sensor1': random.random(),
            'sensor2': random.random(),
            'timestamp': int(time.time())
        }
        producer.send('iot-data', data)
        time.sleep(1)

if __name__ == "__main__":
    produce_iot_data()

Step 5: Data Processing

Implement data preprocessing steps.

# src/data/preprocess.py
import pandas as pd

def preprocess(raw_data_path, processed_data_path):
    df = pd.read_csv(raw_data_path)
    # Handle missing values
    df.fillna(method='ffill', inplace=True)
    # Feature scaling
    from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    df[['sensor1', 'sensor2']] = scaler.fit_transform(df[['sensor1', 'sensor2']])
    df.to_csv(processed_data_path, index=False)

if __name__ == "__main__":
    preprocess('data/raw/iot_data.csv', 'data/processed/iot_data_processed.csv')

Step 6: Exploratory Data Analysis (EDA)

Use Jupyter notebooks for EDA.

jupyter notebook notebooks/EDA.ipynb

Step 7: Model Training

Train anomaly detection models.

# src/models/train_model.py
import pandas as pd
from sklearn.ensemble import IsolationForest
import joblib

def train_model(data_path, model_path):
    df = pd.read_csv(data_path)
    model = IsolationForest(contamination=0.05)
    model.fit(df[['sensor1', 'sensor2']])
    joblib.dump(model, model_path)

if __name__ == "__main__":
    train_model('data/processed/iot_data_processed.csv', 'models/anomaly_model.pkl')

Step 8: Model Deployment

Create a REST API for model inference.

# src/main.py
from fastapi import FastAPI
import joblib
import pandas as pd
from pydantic import BaseModel

app = FastAPI()
model = joblib.load('models/anomaly_model.pkl')

class DataPoint(BaseModel):
    sensor1: float
    sensor2: float
    timestamp: int

@app.post("/predict")
def predict(data: DataPoint):
    df = pd.DataFrame([data.dict()])
    prediction = model.predict(df[['sensor1', 'sensor2']])
    return {"anomaly": bool(prediction[0] == -1)}

Dockerize the Application

# docker/Dockerfile
FROM python:3.9

WORKDIR /app

COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

COPY src/ .

CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]

Build and run the Docker container.

docker build -t anomaly-detector .
docker run -d -p 8000:8000 anomaly-detector

Step 9: MLOps Integration

MLflow Setup

pip install mlflow
mlflow ui

CI/CD with GitHub Actions

Create a .github/workflows/ci-cd.yml file.

name: CI/CD Pipeline

on:
  push:
    branches: [ main ]

jobs:
  build:

    runs-on: ubuntu-latest

    steps:
    - uses: actions/checkout@v2

    - name: Set up Python
      uses: actions/setup-python@v2
      with:
        python-version: '3.9'

    - name: Install dependencies
      run: |
        python -m pip install --upgrade pip
        pip install -r requirements.txt

    - name: Run Tests
      run: |
        pytest

    - name: Build Docker Image
      run: |
        docker build -t anomaly-detector .

    - name: Push Docker Image
      uses: docker/build-push-action@v2
      with:
        push: true
        tags: yourdockerhubusername/anomaly-detector:latest

Step 10: Monitoring

Configure Grafana to visualize metrics from the application and Kafka.

docker run -d -p 3000:3000 grafana/grafana

Dataset Selection

For this project, it's essential to select a dataset that reflects real-world IoT scenarios. Here are some recommended options:

  1. Kaggle IoT Network Intrusion Dataset

  2. Kaggle ESP32 IoT Smart Home Dataset

  3. Yahoo Webscope Anomaly Detection Dataset

    • Description: Provides time-series data with annotated anomalies.
    • Link: Yahoo Webscope
  4. Custom Dataset

    • Description: If existing datasets don't meet your specific requirements, consider generating synthetic data or collecting data from actual IoT devices.

Recommendation: Start with the Kaggle ESP32 IoT Smart Home Dataset for sensor readings and labeled anomalies, which aligns well with the project objectives.


Additional Resources


About

working on it currently

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published