Structure of rl_algos/
├── ddqn.py
├── ddqn_modified.py
├── deep_sarsa.py
├── dqn.py
├── ddpg.py
├── ma-sarsa.py
├── maddpg.py
├── ppo.py
├── q_learning.py
└── sarsa.py
Structure of multi_uav_coverage_maddpg/
├── env.py
├── test.py
├── train.py
├── utils/
│ ├── data_points.py
│ ├── decoded_points.py
│ ├── input.py
│ ├── logger.py
│ └── plot_logs.py
└── maddpg/
├── agents.py
├── buffer.py
├── cnn.py
└── maddpg_uav.py
- Clone the repository :
[email protected]:Project-Group-LBP/LBP.git
. - Create a virtual environment and activate it.
- Install requirements using
pip install -r requirements.txt
.
To train the MADDPG model:
cd multi_uav_coverage_maddpg
# Basic training with default settings (500 episodes)
python train.py
# Train with custom number of episodes
python train.py --num_episodes=1000
# Train using image initialization
python train.py --use_img --img_path="path/to/image.png"
# Resume training from saved model
python train.py --resume="saved_models/maddpg_episode_100" # can input pending no of episodes
To test a trained model:
cd multi_uav_coverage_maddpg
# Basic testing with default settings (50 episodes)
python test.py --model_path="saved_models/maddpg_episode_final"
# Test with custom number of episodes
python test.py --model_path="saved_models/maddpg_episode_final" --num_episodes=25
# Test with image initialization
python test.py --model_path="saved_models/maddpg_episode_final" --use_img --img_path="path/to/image.png"