Skip to content

LeanderCS/sqlalchemy-fake-model

Repository files navigation

sqlalchemy-fake-model

ModelFaker is a utility that generates fake data for SQLAlchemy models. It leverages the power of the Faker library to create realistic yet random data that can be used to populate your database during development or for testing your application's functionality.

It supports a wide range of data types, including basic types, enums, and relationships between models.

Thank you for using sqlalchemy-fake-model!

If you have any questions or suggestions, please feel free to open an issue on GitHub here.

If you don't want to miss any updates, please star the repository. This will help me to understand how many people are interested in this project.

Test Status:https://img.shields.io/github/actions/workflow/status/LeanderCS/sqlalchemy-fake-model/test.yaml?branch=main&style=flat-square&label=Github%20Actions https://img.shields.io/coveralls/LeanderCS/sqlalchemy-fake-model/main.svg?style=flat-square&label=Coverage
Version Info:https://img.shields.io/pypi/v/sqlalchemy-fake-model?style=flat-square&label=PyPI
Compatibility:https://img.shields.io/pypi/pyversions/sqlalchemy-fake-model?style=flat-square&label=PyPI
Downloads:https://static.pepy.tech/badge/sqlalchemy-fake-model/month https://static.pepy.tech/badge/sqlalchemy-fake-model

Installation

pip install sqlalchemy-fake-model

Quickstart

To use the ModelFaker module, you need to create a new instance of the ModelFaker class and pass the SQLAlchemy model you want to generate fake data for. Now you just need to provide a session to create the data in. For that you can either simply pass the session or if you use one of the Supported Frameworks, you can leave the session empty and the module will try to get the session from the framework.

Usage

For all type of appications:

from sqlalchemy_fake_model import ModelFaker
from path-to-model import Users
from path-to-session import session

ModelFaker(Users, session).create(5)

For appications using one of the Supported Frameworks:

from sqlalchemy_fake_model import ModelFaker
from path-to-model import Users

ModelFaker(Users).create(5)

Set-up Models

Supported Data Types

The ModelFaker module supports the following data types:

  1. String - Generates random strings of varying lengths.
  2. Text - Generates random text values of varying lengths.
  3. Integer - Generates random integers within a specified range.
  4. Float - Generates random floating-point numbers within a specified range.
  5. Boolean - Generates random boolean values.
  6. Date - Generates random date values within a specified range.
  7. DateTime - Generates random datetime values within a specified range.
  8. Enum - Generates random values from a specified list of choices.
  9. Relationship - Generates random values for relationships between models.
  10. Json - Generates random data in the custom json format.

Default values

The ModelFaker module also supports default values for fields. These values will be used if no other value is specified.

Example implementation of default values

Following example would result in a default value of 0 for the field:

is_deleted: Column[Boolean] = db.Column(
    db.Boolean,
    nullable=False,
    server_default="0"
)

You can use default or server_default to set default values for fields.

Nullable fields

The ModelFaker module supports nullable fields. If a field is nullable, it will generate None values for that field.

Example implementation of nullable fields

Following example would result in a None value for the field:

description: Column[String] = db.Column(
    db.String(255),
    nullable=True
)

Define max and min values

The ModelFaker module supports max and min values for fields. You can define the range of values for integer and float fields.

Example implementation of max and min values

Following example would result in a random integer value between 1 and 100:

age: Column[Integer] = db.Column(
    db.Integer(),
    nullable=False,
    info='{"min": 1, "max": 100}'
)

Define enum fields

The ModelFaker module supports enum fields. You can define a list of choices for an enum field, and it will generate random values from that list.

Example implementation of enum field

Following example would result in a random value from the list of choices:

status: Column[Enum] = db.Column(
    Enum(StatusTypesEnum),
    nullable=False
)

The enum class StatusTypesEnum could look like this:

from enum import Enum

class StatusTypesEnum(Enum):

    CREATED = "created"

    PUBLISHED = "published"

    CANCELED = "canceled"

It also allows a default enum value:

status: Column[Enum] = db.Column(
    Enum(StatusTypesEnum),
    nullable=False,
    default=StatusTypesEnum.ACTIVE.value
)

Define relationships

The ModelFaker module supports relationships between models. You can define relationships between models, and it will generate the corresponding other part of those relationship.

It supports the following relationship types:

  1. OneToOne - Generates random values for a one-to-one relationship.
  2. OneToMany - Generates random values for a one-to-many relationship.
  3. ManyToMany - Generates random values for a many-to-many relationship.

Example implementation of relationships

Following example would result in a creation of an entry for the users table to set up the relationship:

class User(Base):
    __tablename__ = "users"

    id: Column[Integer] = db.Column(
        db.Integer,
        primary_key=True
    )

class Message(Base):
    user_id: Column[Integer] = db.Column(
        db.Integer,
        db.ForeignKey("users.id"),
        nullable=False
    )

It is also allowed to use different types as primary key.

Define custom data format

The ModelFaker module supports custom data format generation. You can define custom functions to generate data for fields.

Example implementation of custom data format

Following example would result in a json list of strings eg. string[] in the database:

emails: Column[Text] = db.Column(
    db.Text(),
    nullable=False,
    default='[]',
    doc='["string"], ["integer"]'
)

Another example would result in a json object eg. object in the database:

address: Column[Text] = db.Column(
    db.Text(),
    nullable=False,
    default='{}',
    doc='{"street": "string", "location": {"city": ""string", "zip": "string"}}'
)

Supported Frameworks

The ModelFaker module is able to detect the sqlalchemy session automatically for the following frameworks:

  1. Flask
  2. Django
  3. Torando

If you are using one of these frameworks, you can simply leave the session empty and the module will try to get thesession from the framework. If not you have to pass the db session as a parameter.

About

A library to generate complex fake database-entries based on SQLAlchemy models

Resources

License

Stars

Watchers

Forks

Contributors 2

  •  
  •