Can LLMs Outshine Conventional Recommenders? A Comparative Evaluation
gh repo clone Jyonn/RecBench
cd RecBench
pip install -r requirements.txt
RecBench supports 15 datasets across domains like news, books, movies, music, fashion, and e-commerce:
- 📰 MIND: Large-scale Microsoft news data for CTR prediction.
- 📰 PENS: Personalized news recommendation dataset.
- 📚 Goodreads: Book reviews and metadata.
- 📚 Amazon Books: Subset of Amazon product reviews.
- 🎥 MovieLens: Classic movie rating dataset.
- 📺 MicroLens: MovieLens dataset with user-item interactions.
- 📺 Netflix Prize: Large-scale movie rating competition dataset.
- 🎵 Amazon CDs: Music CD reviews and metadata.
- 🎵 Last.fm: Music playback logs and tagging data.
- 👗 H&M: Apparel and fashion product data.
- 👗 POG: Fashion product reviews and metadata.
- 📱 Amazon Electronics: Electronics product reviews and metadata.
- 🎮 Steam: Video game reviews and metadata.
- 🏨 HotelRec: Hotel recommendation dataset.
- ️️🍽️ Yelp: Restaurant reviews and metadata.
You can download our preprocessed data from Kaggle (Recommended), Google Drive, and Github Release.
python worker.py --model llama1 --data mind
python tuner.py --model llama1 --train mind --valid mind
python seq_processor.py --data mind # preprocess SeqRec data
python id_coder.py --data mind --seq true # use unique identifier to represent items
python seq_tuner.py --model llama1seq --data mind --code_path ./code/mind.id.seq.code
python embedder.py --data mind --model llama1 # extract item embeddings
python code_generator.py --data mind --model llama1 # use RQ-VAE for discrete tokenization
python seq_tuner.py --model llama1seq --data mind --code_path ./code/mind.llama1.seq.code
More documentations will be available soon.
- 2025-03-07: Our first benchmark paper is posted on arXiv: Benchmarking LLMs in Recommendation Tasks: A Comparative Evaluation with Conventional Recommenders.
- 2024-12-15: RecBench v1 library is released.
- 2024-06-04: RecBench project is initiated.
If you find RecBench useful in your research, please consider citing our project:
@article{liu2025benchmarking,
title={Benchmarking LLMs in Recommendation Tasks: A Comparative Evaluation with Conventional Recommenders},
author={Liu, Qijiong and Zhu, Jieming and Fan, Lu and Wang, Kun and Hu, Hengchang and Guo, Wei and Liu, Yong and Wu, Xiao-Ming},
journal={arXiv preprint arXiv:2503.05493},
year={2025}
}