Skip to content

Gordon119/Enhancing-Multilingual-ASR-for-Unseen-Languages-via-Language-Embedding-Modeling

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Enhancing Multilingual ASR for Unseen Languages via Language Embedding Modeling (IEEE ICASSP 2025)

Paper: https://ieeexplore.ieee.org/document/10890363

Installation

Use the exact version of the packages in the requirements.txt.

pip install -r requirements.txt

Data Format

The data format follows ml_superb. Each instance contains the path to the wav file and the text. For example,

path,text
data/ml_superb/sixth_edition/fleurs/ast/wav/fleurs_ast_000067.wav,EN CUANTES A XAPóN XAPóN YERA UN PAíS-ISLLA IGUAL QUE GRAN BRETAñA
data/ml_superb/sixth_edition/fleurs/ast/wav/fleurs_ast_000068.wav,DE FRACASAR LOS ALIAOS YE PROBABLE QU'ALEMAñA CONQUISTARE GRAN BRETAñA Y EL RESTU D'EUROPA
data/ml_superb/sixth_edition/fleurs/ast/wav/fleurs_ast_000069.wav,LES IMáXENES D’INFRARROXU AMUESEN QUE LES VARIACIONES DE TEMPERATURA ENTE’L DíA Y LA NUECHE PRUEBEN QUE YE FáCIL QUE SEYAN CUEVES
...

You can use the scripts gen_data_seen.py and gen_data.py in tools to generate Whisper-seen and Whisper-unseen data.

Zero-shot

There are three settings for this experiment: Vanilla, Utterance-wise Weighted Sum and Corpus-wise Weighted Sum. For the weighted sum methods, please refer to ws_zero_shot.sh for the usage of ws_zero_shot.py. For the vanilla method, please use the script vanilla_zero_shot.sh

Finetuning

For the finetuning experiments, there are two additional methods: Trainable Weighted Sum and Predictor Based methods. The following are the scripts and their corresponding settings:

  • Vanilla: vanilla_finetune.sh
  • Utterance-wise and Corpus-wise Weighted Sum: ws_finetune_untrainalbe.sh
  • Trainable Weighted Sum: ws_finetune_trainable.sh

As for the Predictor-base method, a mlp must be trained first to get the predictor.

  • Get training data (weight-embedding pairs) and train the predictor: get_predictor.sh
  • Use the Predictor: utterance_wise_with_predictor.sh and corpus_wise_with_predictor.sh

About

The repository for the Whisper language weighted sum experiments.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published