
A simple GUI application for image tagging using the WD-14 model. This tool makes it easy to automatically generate tags for your images with additional customization options.
- Support for multiple AI models (WD-14, Florence 2, JoyCaption)
- Batch processing of multiple images or folders
- Custom output location
- Additional tags support
- Tag blocking/filtering
- Simple and intuitive interface
- Clone this repository:
git clone https://github.com/YOUR_USERNAME/easy-tagger.git
cd easy-tagger
- Create a virtual environment and activate it:
python -m venv .venv
# On Windows:
.venv\Scripts\activate
# On Linux/Mac:
source .venv/bin/activate
- Install the requirements:
pip install -r requirements.txt
- Run the application:
python easy_tagger.py
-
Using the interface:
-
Select Model: Choose the AI model you want to use (WD-14 recommended)
-
Input Selection:
- Choose "Select Files" to tag individual images
- Choose "Select Folder" to tag all images in a folder
-
Output Folder: Choose where to save the tagged images and tag files
-
Tag Settings:
-
Additional Tags: Enter any tags you want to add to ALL images
- Example:
anime, digital_art, high_quality
- Separate tags with commas
- Example:
-
Banned Tags: Enter tags you want to exclude from results
- Example:
sensitive, questionable, explicit
- Separate tags with commas
- Example:
-
-
-
Click "Start Tagging" to begin the process
-
Results:
- Tagged images will be copied to the output folder
- Each image will have an accompanying
_tags.txt
file - The original images remain unchanged
- The WD-14 model is optimized for anime/illustration content
- For best results, use images with clear subjects
- You can use Additional Tags to add metadata like artist name or source
- Use Banned Tags to filter out unwanted or incorrect tags
- Python 3.8 or higher
- PyQt6
- torch
- Pillow
- numpy
- onnxruntime
- transformers
- huggingface_hub
This project is licensed under the MIT License - see the LICENSE file for details.