Both Strawberry fields and Pennylane
Strawberry Fields is a full-stack library for designing, simulating, and optimizing quantum optical circuits. Below is a detailed list of commands, usage examples, and advanced techniques.
Ensure you have Strawberry Fields installed.
pip install strawberryfields
Formulate and run a basic quantum circuit.
import strawberryfields as sf
from strawberryfields import ops
# Create a 2-mode quantum circuit
prog = sf.Program(2)
with prog.context as q:
ops.Sgate(0.54) | q[0]
ops.Dgate(0.3 + 0.2j) | q[1]
ops.BSgate(0.5) | (q[0], q[1])
# Run the circuit on the Fock backend
eng = sf.Engine("fock", backend_options={"cutoff_dim": 5})
result = eng.run(prog)
# Print the results
print(result.state)
Creating and running a more complex quantum circuit.
import strawberryfields as sf
from strawberryfields import ops
# Create a 4-mode quantum circuit
prog = sf.Program(4)
with prog.context as q:
ops.Sgate(0.54) | q[0]
ops.Dgate(0.3 + 0.2j) | q[1]
ops.BSgate(0.5) | (q[0], q[1])
ops.MZgate(0.1) | (q[2], q[3])
ops.CXgate(0.5) | (q[1], q[3])
ops.CZgate(0.2) | (q[0], q[2])
# Run the circuit on the Fock backend
eng = sf.Engine("fock", backend_options={"cutoff_dim": 10})
result = eng.run(prog)
# Print the results
print(result.state)
Using Strawberry Fields with optimization tools.
import strawberryfields as sf
from strawberryfields import ops
from scipy.optimize import minimize
# Define a cost function
def cost_function(params):
prog = sf.Program(2)
with prog.context as q:
ops.Sgate(params[0]) | q[0]
ops.Dgate(params[1] + params[2]*1j) | q[1]
ops.BSgate(params[3]) | (q[0], q[1])
eng = sf.Engine("fock", backend_options={"cutoff_dim": 5})
result = eng.run(prog)
state = result.state
return -abs(state.fidelity([1, 0, 0, 0]))
# Optimize the parameters
initial_params = [0.5, 0.3, 0.2, 0.5]
result = minimize(cost_function, initial_params, method='Nelder-Mead')
print(result.x)
Visualizing quantum circuits and results.
import strawberryfields as sf
from strawberryfields import ops, plotting
prog = sf.Program(2)
with prog.context as q:
ops.Sgate(0.54) | q[0]
ops.Dgate(0.3 + 0.2j) | q[1]
ops.BSgate(0.5) | (q[0], q[1])
eng = sf.Engine("fock", backend_options={"cutoff_dim": 5})
result = eng.run(prog)
# Plot Wigner function
plotting.plot_wigner(result.state, mode=0)
PennyLane is a machine learning library for quantum and hybrid quantum-classical computations. Below is a detailed list of commands, usage examples, and advanced techniques.
Ensure you have PennyLane installed.
pip install pennylane
Creating and running a simple quantum node.
import pennylane as qml
from pennylane import numpy as np
# Define a device
dev = qml.device("default.qubit", wires=1)
@qml.qnode(dev)
def circuit(params):
qml.RX(params[0], wires=0)
qml.RY(params[1], wires=0)
return qml.expval(qml.PauliZ(0))
# Run the circuit
params = np.array([0.1, 0.2])
print(circuit(params))
Using PennyLane's optimizers to minimize a cost function.
import pennylane as qml
from pennylane import numpy as np
# Define a device
dev = qml.device("default.qubit", wires=1)
@qml.qnode(dev)
def circuit(params):
qml.RX(params[0], wires=0)
qml.RY(params[1], wires=0)
return qml.expval(qml.PauliZ(0))
# Define a cost function
def cost(params):
return (circuit(params) - 1)**2
# Initialize the optimizer
opt = qml.GradientDescentOptimizer(stepsize=0.1)
params = np.array([0.1, 0.2])
# Optimize the parameters
for _ in range(100):
params = opt.step(cost, params)
print(params)
-
Using custom observables:
import pennylane as qml from pennylane.operation import Observable class CustomObservable(Observable): num_wires = 1 @staticmethod def decomposition(wires): return [qml.RZ(0.3, wires=wires), qml.RY(0.2, wires=wires)] dev = qml.device("default.qubit", wires=1) @qml.qnode(dev) def circuit(): qml.RX(0.1, wires=0) return qml.expval(CustomObservable(wires=0)) print(circuit())
-
Creating custom devices:
import pennylane as qml from pennylane import Device class CustomDevice(Device): name = 'Custom device' short_name = 'custom.dev' pennylane_requires = '0.14' version = '0.1.0' author = 'Your Name' operations = {'RX', 'RY', 'RZ'} observables = {'PauliX', 'PauliY', 'PauliZ'} def __init__(self, wires): super().__init__(wires, shots=None) def apply(self, operations, **kwargs): for operation in operations: self.apply_operation(operation) def apply_operation(self, operation): # Implement the logic to apply the operation pass def expval(self, observable, wires, par): # Implement the logic to measure the expectation value pass qml.device.register('custom.dev', CustomDevice) dev = qml.device('custom.dev', wires=1)
This comprehensive guide covers a wide range of tasks for working with Strawberry Fields and PennyLane. From installation and basic problem formulation to advanced techniques, optimization, visualization, and integration with other tools, this guide provides a thorough resource for quantum programming with Xanadu's quantum software.