Skip to content

DeadmanXXXII/Braket

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 

Repository files navigation

Braket

Amazon braket CLI

Amazon Braket CLI Overview

Amazon Braket is a fully managed service that helps researchers and developers to get started with quantum computing. The following guide provides a detailed list of commands, usage examples, and advanced techniques for working with Amazon Braket.

1. Installation

To use Amazon Braket, you need to install the AWS CLI and the Amazon Braket SDK.

# Install AWS CLI
pip install awscli

# Install Amazon Braket SDK
pip install amazon-braket-sdk

2. Setting Up AWS CLI for Braket

Configure the AWS CLI with your credentials.

aws configure

You will be prompted to enter your AWS Access Key, Secret Key, Region, and Output format.

3. Creating and Managing Quantum Tasks

  • List Quantum Devices
aws braket search-devices --filters name=providerArn,values=arn:aws:braket:::device/qpu/ionq/ionQdevice
  • Creating a Quantum Task

Create a quantum task by specifying the device ARN and the parameters for the task.

import boto3
from braket.aws import AwsDevice

# Initialize a session using Amazon Braket
aws_session = boto3.Session()

# Specify the device ARN
device = AwsDevice("arn:aws:braket:::device/qpu/ionq/ionQdevice")

# Define a circuit
from braket.circuits import Circuit

bell = Circuit().h(0).cnot(0, 1)

# Run the circuit
task = device.run(bell, shots=100)
result = task.result()

# Print results
print(result.measurement_counts)
  • Monitor Quantum Tasks

Check the status of a quantum task.

aws braket get-quantum-task --quantum-task-arn <your-quantum-task-arn>

4. Advanced Circuit Design and Execution

  • Building Advanced Circuits

Create more complex circuits using Amazon Braket.

from braket.circuits import Circuit

advanced_circuit = Circuit().h(0).cnot(0, 1).rx(0, 1.57).ry(1, 1.57).rz(0, 3.14)
task = device.run(advanced_circuit, shots=1000)
result = task.result()

print(result.measurement_counts)
  • Parametrized Circuits

Use parameters in your circuits for optimization and variational algorithms.

from braket.circuits import Circuit, FreeParameter

theta = FreeParameter("theta")
param_circuit = Circuit().rx(0, theta).ry(1, theta).rz(0, theta)
task = device.run(param_circuit, shots=1000, inputs={"theta": 1.57})
result = task.result()

print(result.measurement_counts)

5. Optimization and Hybrid Algorithms

  • Classical-Quantum Hybrid Algorithms

Use Braket for hybrid algorithms combining classical and quantum computation.

import numpy as np
from scipy.optimize import minimize
from braket.circuits import Circuit
from braket.aws import AwsDevice

# Define cost function
def cost_function(params):
    device = AwsDevice("arn:aws:braket:::device/qpu/ionq/ionQdevice")
    circuit = Circuit().ry(0, params[0]).rx(1, params[1]).cnot(0, 1)
    task = device.run(circuit, shots=1000)
    result = task.result()
    counts = result.measurement_counts
    # Assume cost function depends on counts
    cost = sum([value for key, value in counts.items() if key == '11'])
    return cost

# Optimize parameters
initial_params = np.array([0.1, 0.2])
result = minimize(cost_function, initial_params, method='Nelder-Mead')

print(result.x)

6. Integration with Other AWS Services

  • Store and Retrieve Results from S3

Store quantum task results in an S3 bucket.

import boto3
from braket.aws import AwsDevice

s3_client = boto3.client("s3")
bucket = "your-s3-bucket"
prefix = "results/"

device = AwsDevice("arn:aws:braket:::device/qpu/ionq/ionQdevice")
circuit = Circuit().h(0).cnot(0, 1)
task = device.run(circuit, shots=100, s3_destination_folder=(bucket, prefix))
result = task.result()

print(result.measurement_counts)

Retrieve results from an S3 bucket.

response = s3_client.get_object(Bucket=bucket, Key=prefix + "your-result-file")
result = response['Body'].read()

print(result)

7. Error Mitigation and Noise Simulation

  • Error Mitigation Techniques

Apply error mitigation techniques in your quantum experiments.

from braket.circuits import Circuit
from braket.aws import AwsDevice

device = AwsDevice("arn:aws:braket:::device/qpu/ionq/ionQdevice")
circuit = Circuit().h(0).cnot(0, 1)

# Add error mitigation
task = device.run(circuit, shots=1000, error_mitigation=True)
result = task.result()

print(result.measurement_counts)
  • Simulating Noise

Simulate noise in your quantum circuits.

from braket.circuits import Circuit
from braket.aws import AwsDevice

device = AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1")
circuit = Circuit().h(0).cnot(0, 1)

# Run with noise simulation
task = device.run(circuit, shots=1000, noise="depolarizing")
result = task.result()

print(result.measurement_counts)

Conclusion

This comprehensive guide covers the installation, basic usage, advanced techniques, optimization, integration with other AWS services, and error mitigation for Amazon Braket. These examples provide a thorough resource for getting started and advancing in quantum computing with Amazon Braket.

About

Amazon braket CLI

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published