Amazon braket CLI
Amazon Braket is a fully managed service that helps researchers and developers to get started with quantum computing. The following guide provides a detailed list of commands, usage examples, and advanced techniques for working with Amazon Braket.
To use Amazon Braket, you need to install the AWS CLI and the Amazon Braket SDK.
# Install AWS CLI
pip install awscli
# Install Amazon Braket SDK
pip install amazon-braket-sdk
Configure the AWS CLI with your credentials.
aws configure
You will be prompted to enter your AWS Access Key, Secret Key, Region, and Output format.
- List Quantum Devices
aws braket search-devices --filters name=providerArn,values=arn:aws:braket:::device/qpu/ionq/ionQdevice
- Creating a Quantum Task
Create a quantum task by specifying the device ARN and the parameters for the task.
import boto3
from braket.aws import AwsDevice
# Initialize a session using Amazon Braket
aws_session = boto3.Session()
# Specify the device ARN
device = AwsDevice("arn:aws:braket:::device/qpu/ionq/ionQdevice")
# Define a circuit
from braket.circuits import Circuit
bell = Circuit().h(0).cnot(0, 1)
# Run the circuit
task = device.run(bell, shots=100)
result = task.result()
# Print results
print(result.measurement_counts)
- Monitor Quantum Tasks
Check the status of a quantum task.
aws braket get-quantum-task --quantum-task-arn <your-quantum-task-arn>
- Building Advanced Circuits
Create more complex circuits using Amazon Braket.
from braket.circuits import Circuit
advanced_circuit = Circuit().h(0).cnot(0, 1).rx(0, 1.57).ry(1, 1.57).rz(0, 3.14)
task = device.run(advanced_circuit, shots=1000)
result = task.result()
print(result.measurement_counts)
- Parametrized Circuits
Use parameters in your circuits for optimization and variational algorithms.
from braket.circuits import Circuit, FreeParameter
theta = FreeParameter("theta")
param_circuit = Circuit().rx(0, theta).ry(1, theta).rz(0, theta)
task = device.run(param_circuit, shots=1000, inputs={"theta": 1.57})
result = task.result()
print(result.measurement_counts)
- Classical-Quantum Hybrid Algorithms
Use Braket for hybrid algorithms combining classical and quantum computation.
import numpy as np
from scipy.optimize import minimize
from braket.circuits import Circuit
from braket.aws import AwsDevice
# Define cost function
def cost_function(params):
device = AwsDevice("arn:aws:braket:::device/qpu/ionq/ionQdevice")
circuit = Circuit().ry(0, params[0]).rx(1, params[1]).cnot(0, 1)
task = device.run(circuit, shots=1000)
result = task.result()
counts = result.measurement_counts
# Assume cost function depends on counts
cost = sum([value for key, value in counts.items() if key == '11'])
return cost
# Optimize parameters
initial_params = np.array([0.1, 0.2])
result = minimize(cost_function, initial_params, method='Nelder-Mead')
print(result.x)
- Store and Retrieve Results from S3
Store quantum task results in an S3 bucket.
import boto3
from braket.aws import AwsDevice
s3_client = boto3.client("s3")
bucket = "your-s3-bucket"
prefix = "results/"
device = AwsDevice("arn:aws:braket:::device/qpu/ionq/ionQdevice")
circuit = Circuit().h(0).cnot(0, 1)
task = device.run(circuit, shots=100, s3_destination_folder=(bucket, prefix))
result = task.result()
print(result.measurement_counts)
Retrieve results from an S3 bucket.
response = s3_client.get_object(Bucket=bucket, Key=prefix + "your-result-file")
result = response['Body'].read()
print(result)
- Error Mitigation Techniques
Apply error mitigation techniques in your quantum experiments.
from braket.circuits import Circuit
from braket.aws import AwsDevice
device = AwsDevice("arn:aws:braket:::device/qpu/ionq/ionQdevice")
circuit = Circuit().h(0).cnot(0, 1)
# Add error mitigation
task = device.run(circuit, shots=1000, error_mitigation=True)
result = task.result()
print(result.measurement_counts)
- Simulating Noise
Simulate noise in your quantum circuits.
from braket.circuits import Circuit
from braket.aws import AwsDevice
device = AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1")
circuit = Circuit().h(0).cnot(0, 1)
# Run with noise simulation
task = device.run(circuit, shots=1000, noise="depolarizing")
result = task.result()
print(result.measurement_counts)
This comprehensive guide covers the installation, basic usage, advanced techniques, optimization, integration with other AWS services, and error mitigation for Amazon Braket. These examples provide a thorough resource for getting started and advancing in quantum computing with Amazon Braket.