An N-state Markov Chain library programmed in C#
Example:
//Create markov chain
Chain<string, string> chain = new Chain<string, string>(
new DefaultKeyGenMD5<string>(),
new DefaultProbabilityStorage<string, string>(),
new DefaultTrainer<string, string>(),
order: 8); //order of 8
//Train on data from input.txt
chain.Trainer.Train(data);
//create generation options - max length of 250
var options = new GenerationOptionsBase() { MaximumLength = 250 };
// Generate output
var result = chain.Trainer.Generate(options).TakeWhile(v => v != "\r");
Example Program output:
In other words, conditional on the state at discrete-time Markov process's full history.
-----------------------------------------------------------------------------------------
In other words, conditional on the present state at discrete-time Markov chain (DTMC).
-----------------------------------------------------------------------------------------
The adjectives Markov chain or Markov process's full history.
-----------------------------------------------------------------------------------------
A Markov chain (CTMC).
-----------------------------------------------------------------------------------------
In simpler terms, it is a process is called a continuous-time process.
-----------------------------------------------------------------------------------------
A continuous-time process is a stochastic simulation dynamics.
-----------------------------------------------------------------------------------------
The adjectives Markov process's full history.
-----------------------------------------------------------------------------------------
Markov chains have many applications as statistics, thermodynamics.
-----------------------------------------------------------------------------------------