An Experimental Comparison of Pregel-like

Graph Processing Systems

Minyang Han, Khuzaima Daudjee, Khaled Ammar,
M. Tamer Ozsu, Xingfang Wang, Tiangi Jin

University of Waterloo

VLDB 2014

Overview

Motivation
Systems Tested
Methodology

Experimental Results

Overview

Motivation

Motivation

Many new graph processing systems...
...but existing studies lack scale and comprehensiveness.

Motivation

Many new graph processing systems...
...but existing studies lack scale and comprehensiveness.

Our study provides:
m Experiments with scale: up to 128 EC2 machines.

m Comprehensive combination of algorithms and datasets.

Motivation

Many new graph processing systems...
...but existing studies lack scale and comprehensiveness.

Our study provides:

m Experiments with scale: up to 128 EC2 machines.

m Comprehensive combination of algorithms and datasets.
m Focus on time, memory, and network.
|

Use of similar systems for an apples-to-apples comparison.

Overview

Systems Tested

Systems Tested

Giraph

Systems Tested

Superstep 1

Superstep 2

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication

Barrier

Systems Tested

Giraph

. Superstep 1 . Superstep 2
Machine 1 Machine 1
Machine 2 Machine 2
Machine 3 Machine 3

Communication
Barrier

Systems Tested

Superstep 1

Superstep 2

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication

Barrier

Systems Tested

Machine 1

GraphLab

Machine 1

Machine 2

Machine 3

Machine 2

Machine 3

adjacency list

© @

adjacency list

© @

| Superstep 1 |
F F

Superstep 2

Can be implemented as:

| Machine 1 | Machine 1 |
m Byte array (default). Moo =n
= HaSh map | Machine 3 | Machine 3 |

Comm. Barrier

Giraph (Byte Array)

Byte array adjacency list:

Giraph (Byte Array)

Byte array adjacency list:

Giraph (Byte Array)

Byte array adjacency list:

Target ID: | 6
Weight: 0.5

Giraph (Byte Array)

Byte array adjacency list:

Giraph (Byte Array)

Byte array adjacency list:

Giraph (Byte Array)

Byte array adjacency list:

Giraph (Byte Array)

Byte array adjacency list:

Giraph (Byte Array)

Byte array adjacency list:

Giraph (Byte Array)

Byte array adjacency list:

Giraph (Byte Array)

Byte array adjacency list:

Target ID:
Weight:

Giraph (Byte Array)

Byte array adjacency list:

Giraph (Byte Array)

Byte array adjacency list:

Giraph (Hash Map)

Hash map adjacency list:

Target ID Weight

Giraph (Hash Map)

Hash map adjacency list:

- Target ID Weight

Giraph (Hash Map)

Hash map adjacency list:

Target ID Weight

o [18]

Giraph (Hash Map)

Hash map adjacency list:

- Target ID Weight
Target ID: | 6
Weight: 0.5
Target ID: | 9
Weight: 1.2

Giraph (Hash Map)

Hash map adjacency list:

Giraph (Hash Map)

Hash map adjacency list:

Target ID Weight

Giraph (Hash Map)

Hash map adjacency list:

Giraph (Summary)

Byte array: Hash map:
m Space efficient. v/ m Less space efficient. X

m Overheads for mutations. X m Efficient for mutations. v

Giraph (Summary)

Byte array: Hash map:
m Space efficient. v/ m Less space efficient. X
m Overheads for mutations. X m Efficient for mutations. v/

What'’s the tradeoff like?

Two optional optimizations:
m LALP.

® Dynamic migration.

Superstep 1

Superstep 2

Machine 1	Machine 1
Machine 2	Machine 2
Machine 3	Machine 3

Comm. Barrier

GPS (LALP)

LALP (Large Adjacency List Partitioning):

(=)
(2)

Vo

Machine 1

Machine 2

10

GPS (LALP)

LALP (Large Adjacency List Partitioning):

(=)
(2)

Vo

Machine 1

/11N

Machine 2

10

GPS (LALP)

LALP (Large Adjacency List Partitioning):

(=)
(2)

Vo

>

Machine 1

()
(D

Machine 2

10

GPS (LALP)

LALP (Large Adjacency List Partitioning):

(=)
(2)

Vo

9l

Machine 1

Machine 2

10

GPS (Dynamic Migration)

Dynamic migration:

Sgliac

Machine 1 Machine 2

11

GPS (Dynamic Migration)

Dynamic migration:

R\

ho

Machine 1 Machine 2

11

GPS (Dynamic Migration)

Dynamic migration:

Vo

(o) (=)

Machine 1 Machine 2

11

GPS (Summary)

LALP:
m Reduces network usage. v/

m Sent messages must be same. X

Dynamic migration:
m Reduces network usage. v/
m Incompatible with DMST. X

12

GPS (Summary)

LALP:
m Reduces network usage. v/

m Sent messages must be same. X

Dynamic migration:
m Reduces network usage. v/
m Incompatible with DMST. X

Do these improve performance?

12

Mizan:

m Lacks built-in system optimizations. X

m But competitive against older Giraph 0.1. v/

13

Mizan:

m Lacks built-in system optimizations. X

m But competitive against older Giraph 0.1. v/

How does it compare now?

13

GraphLab (Asynchronous)

GraphLab features asynchronous execution: [Machine 1 Machine 1 |

m No communication barriers. v/ [Wachine 2 Machine 2 |

m Uses the most recent vertex values. v/ [Machine 3 Machine 3 |

14

GraphLab (Asynchronous)

Implemented via distributed locking:

Vi V2

15

GraphLab (Asynchronous)

Implemented via distributed locking:

Vi V2

Vo

o O

V3 Vg

15

GraphLab (Asynchronous)

Implemented via distributed locking:

Vi V2

@) @)
0

Vo

@ @

V3 Vg

15

GraphLab (Asynchronous)

Implemented via distributed locking:

Vi V2

15

GraphLab (Asynchronous)

Implemented via distributed locking:

Vi V2

15

GraphLab (Asynchronous)

Asynchronous execution:
m No communication barriers. v/
m Uses the most recent vertex values. v

m Potential overheads? X

16

GraphLab (Asynchronous)

Asynchronous execution:
m No communication barriers. v/
m Uses the most recent vertex values. v

m Potential overheads? X

Performance of sync vs. async?

16

Overview

Methodology

17

Tackling Graph Processing Problems

Google recursion | a |

Web Images Videos Maps Books Moo~ Searchioois

About 2,040,000 e

Did you mean: recursion

Recursion - Wikipedia, the free encyclopedia
on vikipodia orgwikiRocursion ~
Recursion is the process of repeating tems i a sef-simiar way. For nstance, when

he sufaces oftwo mirors ars exactly paralle with each her the nested
Recursion (computer science) Recursive definition
scionce A inductie

method wher the soktion o a daintion) i mathamatca logic

o resuks o vikipedis o » i)
pedee Source: shdt.8684.cn

arXiv:0906.0612 (2010)

Source: No

ser, Multi-scale graph comparison (2014)

17

Tackling Graph Processing Problems

Random Walk Sequential Traversal

Google recursion [a |

o

Web Images Videos Maps Books Moo~ Searchioois

‘About 2,040,000 rstits (025 saconds)

Did you mean: recursion

Recursion - Wikipedia, the free encyclopedia

Recursion (computer science) Recursive definition
sconce s 3 A v

or inductve
method uhars the soluton to 3 dofintion) in mathomatica ogic

Source: shdt.8684.cn

More resuls from vikipedia.org »

Parallel Traversal Graph Mutation

Adapted from: Fortunato, arXiv:0906.0612 (2010)

Source: Noguer, Multi-scale graph comparison (2014)

17

Algorithms

Category

Algorithm

Random walk
Sequential traversal
Parallel traversal
Graph mutation

PageRank

SSSP (Single Source Shortest Path)

WCC (Weakly Connected Components)
DMST (Distributed Minimum Spanning Tree)

18

Datasets

LiVEJOURNAL

® orkut a . EE=
T™W UK

LJ OR AR

19

Datasets

Y

LiVEJOURNAL

LJ

orkut

OR

b I
AR T™W UK
|E| =1.46B |E| =3.73B

19

Datasets

LiVEJOURNAL

® orkut e B
T™W

SSIEZ
| | S
UK

|E| =1.46B |E| =3.73B

LJ OR AR

Datasets are:
m Stored on HDFS as text files.

m Loaded via random hash partitioning.

19

Evaluation Metrics

m Time: total time = setup time + computation time
m Memory: maximum memory usage (across all machines)

m Network: total network usage (summed over all machines)

20

Setup

EC2 Instances

21

Setup

EC2 Instances

21

EC2 Instances

EC2 Instances

EC2 Instances

m ml.xlarge: 4 vCPUs, 156GB memory, Ubuntu 12.04

21

EC2 Instances

m ml.xlarge: 4 vCPUs, 156GB memory, Ubuntu 12.04

Mizan 0.1bul GPS rev 110
2013

2014

I_APR | MAY | JUN | JUL | AUG | SEE | ocT | NOV | DEC

Giraph 1.0.0

JAN | FEB | MAR

GraphlLab 2.2

21

Overview

Experimental Results

22

Read our paper!

Tor memory, we define per-machine memory usage as the
difference between the maximum and minimum memory used

s typically between 200 to 300MB. We focus on mazimum
memory usage, the maximum per-machine usage across al
This gives

Al machines meed Lo rum an experiment withon e

Similarly, per-machine network usage s the total number
of bytes sent or received by a single machine for an exper-
iment. We focus on total network usage, the sum of per-
‘machine usage across all worker machines, as it best enables
a high-level comparison of each system’s network 1/0. Ad-
ditionally, we distinguish between total outgoing (sent) and
total incoming (received) network usage.

Lastly, using different datasets and mumber of machines
enables us to investigate the scalability of cach system: how
perfortance sales with the same graph on more machines

reported by all systems. For network usage, some systems
have built-in message counters but they all differ. Message
connt is also a poor measure of network traffic, as messages
can be of different sizes (such as in DMST) and header sizes
arc ignored. Further, the notion of messages is ill-defined for
GraphLaly's asynchronous mode. For these reasons, we u
/proc/met/dev to track the total bytes sent and received at
cach machine, before and after every experiment.

free. These are started locally on both the master and
worker machines to record CPU, network, and memory uti-
lization in & decentralized manner. They are started before
and killed after each experiment 1o ensure a small but con-
Giraph 1.0.0

after a successful run. We solve this by killing the offending
processes after cach run.

For cach experiment, we perform five runs and report
both the mean and 95% confidence intervals for computa-
tion time, setup time, maximum memory usage, and total
incoming network usage. We show only incoming network
1/0 as it s similar to total outgoing network 1/0 and ex-
hibits identical patterns.

To his section, we present and analyze our experimental
results. Due to space constraints and in the interests of
readability, we present only a subset of all our experimental
data. In particular, we do not show data for the master,
since its memory and network usage are smaller and less
revealing of system performance. All data g
with our code and EC2 images. are available online.

Table 4: for AR, TH, UK.
Computation _Setup_Total Time _Memory Network

GiBA
GiHM
ars
Mizan

With Mutations (DMST)
i g
ol Foot

it foics foltek ot

6.1 Summary of Results

A relative ranking of system performance, for computa-
tion, setup, and total time, maximum memory usage, and
total network 1/0, are presented for non-mutation and mu-
tation (DMST) algorithms in Table 4. System names are
abbreviated as Gi-BA and Gi-HM for Giraph byte array and
s iap respoctvely; GPS for GPS with o aptonal opt-
mizations: and GL-S and GL-A for GraphLal
and asynchronous modes. We exclude GPS
2 they provide litle performance benefite. We foeus on the
larger graphs (AR, TW, and UK) and summarize our findings
o 13 ol 08 in Section 6.6

For each performance attribute, we provide a 4 star rela-
tive ranking, for poor performance, 2 for suboptimal,
3 for good, and 4 for excellent, The ranking of a system is
roughly an average of its performance across algoriths

Overall, for the non-mutation algorithms tested, Giraph
and GraphLab are close: we recommend Giraph byte array
over GraphLab for very large graphs on a limited mumber of
machines, but GraphLab's synchronous mode over Giraph
otherwise. In each case, the recommended system has the
best all-around performance. When mutations are required,
we recommend Giraph hash map over byte array if memory
s not & constraint. If memory is the primary constraint,
then GPS is the best option for both mutation and non-
mutation algoithans

Next, we discuss results for cac m, focusing on the
lorger sraphs, befor highhghting our ﬁ,.dmgx for the LJ and
OR graphs.

6.2 Giraph
Compared to GPS, Girapl's computation times are longer
for PageRank and comparable or shorter for SSSP and WOC

is faster overall: up to 3x shorter total time on PageR-

22

GitHub

Code, results, wiki, and EC2 images:

http://xvz.github.io/graph-processing

23

24

Findings and Lessons Learned (Giraph)

1. Graph storage should be memory and mutation efficient.

No Mutations With Mutations (DMST)
Time Memory Time Memory
Byte array v v Byte array XX v

Hash map X X Hash map v/ X

25

Findings and Lessons Learned (GPS)

2. LALP and dynamic migration provide little gains.

m Time: negative to no improvements. X
m Memory: large overheads on large graphs. X

m Network: little to no improvements. v/

26

Findings and Lessons Learned (Mizan)

3. Message processing optimizations are very important.

Computation Setup Memory Network

No Mutations

Giraph (byte array) Y% ¥riv AR FhAe Ak
Giraph (hash map) YWY ¥ WHWWT YW WRWW
GPS (none) W K e Wk dode Ak k Kok
Mizan VA QXK Ak - QAGAGAGIL * Sk Ak R S 8" S
GraphLab (sync) R KK 1 0" 6 SASIER"o8" o SASIND " 8" SN
GraphLab (async) L QARAGAS 1 0 & AR S SASAINE | SASA S A

27

Findings and Lessons Learned (GraphLab)

4. Distributed locking for asynchronous execution is not scalable.

m Performance degrades as more machines are used. X

m Due to: lock contention, termination scheme, lack of message
batching.

28

Findings and Lessons Learned

5. Giraph scales better across graphs;
GraphlLab scales better across more machines.

29

Findings and Lessons Learned

5. Giraph scales better across graphs;
GraphlLab scales better across more machines.

64 machines TW UK

Giraph (byte array) 5.8GB 7.0GB
GraphLab (sync) 45GB 14GB

29

Findings and Lessons Learned

5. Giraph scales better across graphs;
GraphLab scales better across more machines.

64 machines TW UK

Giraph (byte array) 5.8GB 7.0GB
GraphLab (sync) 45GB 14GB

TW 16 machines 128 machines

Giraph (byte array) 8.5GB 5.8GB
GraphLab (sync) 11GB 3.3GB

29

Comparison Summary

Computation Setup Memory Network
No Mutations
Giraph (byte array) YWy ir WRIH WRWT WRRR
Giraph (hash map) Wik ¥ir WRWTT WRWW WWRRW
GPS (none) L0 A FKevede AR R K Fdedeie
Mizan L QARG Sevedede Sevededt el
GraphLab (sync) W ¥ K dede Adedle Fole kel
GraphLab (async) L QAGA S K Rede et Fevr vl
With Mutations (DMST)

Giraph (byte array) Vv icic TREH HRTT ARRW
Giraph (hash map) YWWw¥w WWWW WRWW WRWW
GPS (none) KKK FKirdede AdeRk Hdrdek

30

Summary

m Comprehensive experimental comparison of four graph
processing systems, with scale.

31

Summary

m Comprehensive experimental comparison of four graph
processing systems, with scale.

m System optimizations are critical, but some optimizations can
degrade performance.

31

Summary

m Comprehensive experimental comparison of four graph
processing systems, with scale.

m System optimizations are critical, but some optimizations can
degrade performance.

m Performance and scalability depend heavily on metric used:
there is no clear winner.

31

	Motivation
	Systems Tested
	Giraph
	GPS
	Mizan
	GraphLab

	Methodology
	Algorithms
	Datasets
	Metrics
	Setup

	Experimental Results
	Comparison Summary

