
An Experimental Comparison of Pregel-like
Graph Processing Systems

Minyang Han, Khuzaima Daudjee, Khaled Ammar,
M. Tamer Özsu, Xingfang Wang, Tianqi Jin

University of Waterloo

VLDB 2014

Overview

1 Motivation

2 Systems Tested

3 Methodology

4 Experimental Results

2

Overview

1 Motivation

2 Systems Tested

3 Methodology

4 Experimental Results

3

Motivation

Many new graph processing systems...
...but existing studies lack scale and comprehensiveness.

Our study provides:

Experiments with scale: up to 128 EC2 machines.

Comprehensive combination of algorithms and datasets.

Focus on time, memory, and network.

Use of similar systems for an apples-to-apples comparison.

3

Motivation

Many new graph processing systems...
...but existing studies lack scale and comprehensiveness.

Our study provides:

Experiments with scale: up to 128 EC2 machines.

Comprehensive combination of algorithms and datasets.

Focus on time, memory, and network.

Use of similar systems for an apples-to-apples comparison.

3

Motivation

Many new graph processing systems...
...but existing studies lack scale and comprehensiveness.

Our study provides:

Experiments with scale: up to 128 EC2 machines.

Comprehensive combination of algorithms and datasets.

Focus on time, memory, and network.

Use of similar systems for an apples-to-apples comparison.

3

Overview

1 Motivation

2 Systems Tested

3 Methodology

4 Experimental Results

4

Systems Tested

Giraph GPS Mizan GraphLabGiraph GPS Mizan GraphLab

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Superstep 1 Superstep 2

4

Systems Tested

Giraph GPS Mizan GraphLab

Giraph GPS Mizan GraphLab

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Superstep 1 Superstep 2

4

Systems Tested

Giraph GPS Mizan GraphLabGiraph

GPS Mizan GraphLab

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Superstep 1 Superstep 2

4

Systems Tested

Giraph GPS Mizan GraphLab

Giraph

GPS

Mizan GraphLab

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Superstep 1 Superstep 2

4

Systems Tested

Giraph GPS Mizan GraphLab

Giraph GPS Mizan

GraphLab

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Superstep 1 Superstep 2

4

Giraph

adjacency list

Can be implemented as:

Byte array (default).

Hash map.

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Comm. Barrier

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Superstep 1 Superstep 2

5

Giraph

adjacency list

Can be implemented as:

Byte array (default).

Hash map.

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Comm. Barrier

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Superstep 1 Superstep 2

5

Giraph

adjacency list

Can be implemented as:

Byte array (default).

Hash map.

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Comm. Barrier

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Superstep 1 Superstep 2

5

Giraph (Byte Array)

Byte array adjacency list:

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

4
0.7

6

Giraph (Byte Array)

Byte array adjacency list:

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

4
0.7

6

Giraph (Byte Array)

Byte array adjacency list:

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

4
0.7

6

Giraph (Byte Array)

Byte array adjacency list:

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

4
0.7

6

Giraph (Byte Array)

Byte array adjacency list:

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

4
0.7

6

Giraph (Byte Array)

Byte array adjacency list:

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

4
0.7

6

Giraph (Byte Array)

Byte array adjacency list:

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

4
0.7

6

Giraph (Byte Array)

Byte array adjacency list:

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

4
0.7

6

Giraph (Byte Array)

Byte array adjacency list:

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

4
0.7

6

Giraph (Byte Array)

Byte array adjacency list:

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

4
0.7

6

Giraph (Byte Array)

Byte array adjacency list:

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

4
0.7

6

Giraph (Byte Array)

Byte array adjacency list:

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

Target ID:
Weight:

0
1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

4
0.7

6

Giraph (Hash Map)

Hash map adjacency list:

Target ID Weight

Target ID:
Weight:

0
1.8

0 1.8
Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

3 1.0

6 0.5

9 1.2

4 0.7

7

Giraph (Hash Map)

Hash map adjacency list:

Target ID Weight
Target ID:
Weight:

0
1.8

0 1.8
Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

3 1.0

6 0.5

9 1.2

4 0.7

7

Giraph (Hash Map)

Hash map adjacency list:

Target ID Weight

Target ID:
Weight:

0
1.8

0 1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

3 1.0

6 0.5

9 1.2

4 0.7

7

Giraph (Hash Map)

Hash map adjacency list:

Target ID Weight

Target ID:
Weight:

0
1.8

0 1.8
Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

3 1.0

6 0.5

9 1.2

4 0.7

7

Giraph (Hash Map)

Hash map adjacency list:

Target ID Weight

Target ID:
Weight:

0
1.8

0 1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

3 1.0

6 0.5

9 1.2

4 0.7

7

Giraph (Hash Map)

Hash map adjacency list:

Target ID Weight

Target ID:
Weight:

0
1.8

0 1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

3 1.0

6 0.5

9 1.2

4 0.74 0.7

7

Giraph (Hash Map)

Hash map adjacency list:

Target ID Weight

Target ID:
Weight:

0
1.8

0 1.8

Target ID:
Weight:

3
1.0

Target ID:
Weight:

4
0.7

Target ID:
Weight:

6
0.5

Target ID:
Weight:

9
1.2

3 1.0

6 0.5

9 1.2

4 0.7

7

Giraph (Summary)

Byte array:

Space efficient. 3

Overheads for mutations. 7

Hash map:

Less space efficient. 7

Efficient for mutations. 3

What’s the tradeoff like?

8

Giraph (Summary)

Byte array:

Space efficient. 3

Overheads for mutations. 7

Hash map:

Less space efficient. 7

Efficient for mutations. 3

What’s the tradeoff like?

8

GPS

Two optional optimizations:

LALP.

Dynamic migration.

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Comm. Barrier

Superstep 1 Superstep 2

9

GPS (LALP)

LALP (Large Adjacency List Partitioning):

Machine 1 Machine 2

v0

v1

v2

v3

v4

v5
v6

v7

v8
v9

10

GPS (LALP)

LALP (Large Adjacency List Partitioning):

Machine 1 Machine 2

v0

v1

v2

v3

v4

v5
v6

v7

v8
v9

10

GPS (LALP)

LALP (Large Adjacency List Partitioning):

Machine 1 Machine 2

v0

v1

v2

v3

v4

v5
v6

v7

v8
v9

10

GPS (LALP)

LALP (Large Adjacency List Partitioning):

Machine 1 Machine 2

v0

v1

v2

v3

v4

v5
v6

v7

v8
v9

10

GPS (Dynamic Migration)

Dynamic migration:

Machine 1 Machine 2

v0 v1

v2 v3

v2v3

11

GPS (Dynamic Migration)

Dynamic migration:

Machine 1 Machine 2

v0 v1

v2 v3

v2v3

11

GPS (Dynamic Migration)

Dynamic migration:

Machine 1 Machine 2

v0 v1

v2 v3

v2v3

11

GPS (Summary)

LALP:

Reduces network usage. 3

Sent messages must be same. 7

Dynamic migration:

Reduces network usage. 3

Incompatible with DMST. 7

Do these improve performance?

12

GPS (Summary)

LALP:

Reduces network usage. 3

Sent messages must be same. 7

Dynamic migration:

Reduces network usage. 3

Incompatible with DMST. 7

Do these improve performance?

12

Mizan

Mizan:

Lacks built-in system optimizations. 7

But competitive against older Giraph 0.1. 3

How does it compare now?

13

Mizan

Mizan:

Lacks built-in system optimizations. 7

But competitive against older Giraph 0.1. 3

How does it compare now?

13

GraphLab (Asynchronous)

GraphLab features asynchronous execution:

No communication barriers. 3

Uses the most recent vertex values. 3

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

14

GraphLab (Asynchronous)

Implemented via distributed locking:

v0

v1 v2

v3 v4

15

GraphLab (Asynchronous)

Implemented via distributed locking:

v0

v1 v2

v3 v4

15

GraphLab (Asynchronous)

Implemented via distributed locking:

v0

v1 v2

v3 v4

15

GraphLab (Asynchronous)

Implemented via distributed locking:

v0

v1 v2

v3 v4

15

GraphLab (Asynchronous)

Implemented via distributed locking:

v0

v1 v2

v3 v4

15

GraphLab (Asynchronous)

Asynchronous execution:

No communication barriers. 3

Uses the most recent vertex values. 3

Potential overheads? 7

Performance of sync vs. async?

16

GraphLab (Asynchronous)

Asynchronous execution:

No communication barriers. 3

Uses the most recent vertex values. 3

Potential overheads? 7

Performance of sync vs. async?

16

Overview

1 Motivation

2 Systems Tested

3 Methodology

4 Experimental Results

17

Tackling Graph Processing Problems

Source: shdt.8684.cn

Source: Noguer, Multi-scale graph comparison (2014)

4

1 1 1

3
6 2

35

Adapted from: Fortunato, arXiv:0906.0612 (2010)

Random Walk Sequential Traversal

Parallel Traversal Graph Mutation

17

Tackling Graph Processing Problems

Source: shdt.8684.cn

Source: Noguer, Multi-scale graph comparison (2014)

4

1 1 1

3
6 2

35

Adapted from: Fortunato, arXiv:0906.0612 (2010)

Random Walk Sequential Traversal

Parallel Traversal Graph Mutation

17

Algorithms

Category Algorithm

Random walk PageRank
Sequential traversal SSSP (Single Source Shortest Path)
Parallel traversal WCC (Weakly Connected Components)
Graph mutation DMST (Distributed Minimum Spanning Tree)

18

Datasets

LJ OR AR TW UK

|E | = 1.46B |E | = 3.73B

Datasets are:

Stored on HDFS as text files.

Loaded via random hash partitioning.

19

Datasets

LJ OR AR TW UK

|E | = 1.46B |E | = 3.73B

Datasets are:

Stored on HDFS as text files.

Loaded via random hash partitioning.

19

Datasets

LJ OR AR TW UK

|E | = 1.46B |E | = 3.73B

Datasets are:

Stored on HDFS as text files.

Loaded via random hash partitioning.

19

Evaluation Metrics

Time: total time = setup time + computation time

Memory: maximum memory usage (across all machines)

Network: total network usage (summed over all machines)

20

Setup

EC2 Instances

m1.xlarge: 4 vCPUs, 15GB memory, Ubuntu 12.04

APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR

2013 2014

Mizan 0.1bu1

Giraph 1.0.0

GPS rev 110

GraphLab 2.2

21

Setup

EC2 Instances

m1.xlarge: 4 vCPUs, 15GB memory, Ubuntu 12.04

APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR

2013 2014

Mizan 0.1bu1

Giraph 1.0.0

GPS rev 110

GraphLab 2.2

21

Setup

EC2 Instances

m1.xlarge: 4 vCPUs, 15GB memory, Ubuntu 12.04

APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR

2013 2014

Mizan 0.1bu1

Giraph 1.0.0

GPS rev 110

GraphLab 2.2

21

Setup

EC2 Instances

m1.xlarge: 4 vCPUs, 15GB memory, Ubuntu 12.04

APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR

2013 2014

Mizan 0.1bu1

Giraph 1.0.0

GPS rev 110

GraphLab 2.2

21

Setup

EC2 Instances

m1.xlarge: 4 vCPUs, 15GB memory, Ubuntu 12.04

APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR

2013 2014

Mizan 0.1bu1

Giraph 1.0.0

GPS rev 110

GraphLab 2.2

21

Setup

EC2 Instances

m1.xlarge: 4 vCPUs, 15GB memory, Ubuntu 12.04

APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR

2013 2014

Mizan 0.1bu1

Giraph 1.0.0

GPS rev 110

GraphLab 2.2

21

Overview

1 Motivation

2 Systems Tested

3 Methodology

4 Experimental Results

22

Read our paper!

For memory, we define per-machine memory usage as the
difference between the maximum and minimum memory used
by a single machine during an experiment. This excludes
the background usage of Hadoop and OS processes, which
is typically between 200 to 300MB. We focus on maximum
memory usage, the maximum per-machine usage across all
worker machines. This gives the minimum memory resources
all machines need to run an experiment without failure.

Similarly, per-machine network usage is the total number
of bytes sent or received by a single machine for an exper-
iment. We focus on total network usage, the sum of per-
machine usage across all worker machines, as it best enables
a high-level comparison of each system’s network I/O. Ad-
ditionally, we distinguish between total outgoing (sent) and
total incoming (received) network usage.

Lastly, using different datasets and number of machines
enables us to investigate the scalability of each system: how
performance scales with the same graph on more machines
or with larger graphs on the same number of machines.

To track these metrics, we use the total and setup times
reported by all systems. For network usage, some systems
have built-in message counters but they all differ. Message
count is also a poor measure of network traffic, as messages
can be of different sizes (such as in DMST) and header sizes
are ignored. Further, the notion of messages is ill-defined for
GraphLab’s asynchronous mode. For these reasons, we use
/proc/net/dev to track the total bytes sent and received at
each machine, before and after every experiment.

For more fine-grained statistics, and to compute memory
usage, we rely on one-second interval reports from sar and
free. These are started locally on both the master and
worker machines to record CPU, network, and memory uti-
lization in a decentralized manner. They are started before
and killed after each experiment to ensure a small but con-
stant overhead across all experiments. Finally, Giraph 1.0.0
has a bug that prevents proper clean up of Java processes
after a successful run. We solve this by killing the offending
processes after each run.

For each experiment, we perform five runs and report
both the mean and 95% confidence intervals for computa-
tion time, setup time, maximum memory usage, and total
incoming network usage. We show only incoming network
I/O as it is similar to total outgoing network I/O and ex-
hibits identical patterns.

6. EXPERIMENTAL RESULTS
In this section, we present and analyze our experimental

results. Due to space constraints and in the interests of
readability, we present only a subset of all our experimental
data. In particular, we do not show data for the master,
since its memory and network usage are smaller and less
revealing of system performance. All data and plots, along
with our code and EC2 images, are available online.4

For all plots, each bar represents a system tested. Bars are
grouped by dataset and number of machines. Time plots are
split into computation time (coloured) and setup time (light
gray), with Mizan’s separate graph partitioner in dark gray
(Figure 2). In the legend, GPS (none) denotes GPS with no
optional optimizations, while GPS (LALP) and GPS (dy-
namic) denote GPS with only LALP or only dynamic mi-
gration respectively. We summarize our observations next.

4http://cs.uwaterloo.ca/~kdaudjee/graph-processing

Table 4: Performance for AR, TW, UK.

Computation Setup Total Time Memory Network

No Mutations

Gi-BA

Gi-HM

GPS

Mizan

GL-S

GL-A

With Mutations (DMST)

Gi-BA

Gi-HM

GPS

6.1 Summary of Results
A relative ranking of system performance, for computa-

tion, setup, and total time, maximum memory usage, and
total network I/O, are presented for non-mutation and mu-
tation (DMST) algorithms in Table 4. System names are
abbreviated as Gi-BA and Gi-HM for Giraph byte array and
hash map respectively; GPS for GPS with no optional opti-
mizations; and GL-S and GL-A for GraphLab’s synchronous
and asynchronous modes. We exclude GPS’s other modes
as they provide little performance benefits. We focus on the
larger graphs (AR, TW, and UK) and summarize our findings
for LJ and OR in Section 6.6.

For each performance attribute, we provide a 4 star rela-
tive ranking, with 1 for poor performance, 2 for suboptimal,
3 for good, and 4 for excellent. The ranking of a system is
roughly an average of its performance across algorithms.

Overall, for the non-mutation algorithms tested, Giraph
and GraphLab are close: we recommend Giraph byte array
over GraphLab for very large graphs on a limited number of
machines, but GraphLab’s synchronous mode over Giraph
otherwise. In each case, the recommended system has the
best all-around performance. When mutations are required,
we recommend Giraph hash map over byte array if memory
is not a constraint. If memory is the primary constraint,
then GPS is the best option for both mutation and non-
mutation algorithms.

Next, we discuss results for each system, focusing on the
larger graphs, before highlighting our findings for the LJ and
OR graphs.

6.2 Giraph
Compared to GPS, Giraph’s computation times are longer

for PageRank and comparable or shorter for SSSP and WCC
(Figure 2). Since Giraph’s setup times are much shorter
than GPS’s, especially on 64 and 128 machines, Giraph
is faster overall: up to 3× shorter total time on PageR-
ank, 8× on SSSP, and 5.5× on WCC. This demonstrates
Giraph 1.0.0’s substantial improvements since version 0.1,
when GPS was reported to be 12× faster for PageRank [32].
Giraph has longer computation times than GraphLab’s syn-
chronous mode but comparable or shorter setup times. Con-
sequently, Giraph’s total time is comparable to GraphLab
for SSSP and WCC, but is up to 3.5× longer on PageRank
due to GraphLab’s much shorter computation times.

Giraph generally has the lowest network usage for SSSP
and WCC, but receives more data than GraphLab’s syn-

1053

22

GitHub

Code, results, wiki, and EC2 images:

http://xvz.github.io/graph-processing

23

24

Findings and Lessons Learned (Giraph)

1. Graph storage should be memory and mutation efficient.

No Mutations

Time Memory

Byte array 3 3
Hash map 7 7

With Mutations (DMST)

Time Memory

Byte array 77 3
Hash map 3 7

25

Findings and Lessons Learned (GPS)

2. LALP and dynamic migration provide little gains.

Time: negative to no improvements. 7

Memory: large overheads on large graphs. 7

Network: little to no improvements. 3

26

Findings and Lessons Learned (Mizan)

3. Message processing optimizations are very important.

Computation Setup Memory Network

No Mutations

Giraph (byte array)
Giraph (hash map)
GPS (none)
Mizan
GraphLab (sync)
GraphLab (async)

27

Findings and Lessons Learned (GraphLab)

4. Distributed locking for asynchronous execution is not scalable.

Performance degrades as more machines are used. 7

Due to: lock contention, termination scheme, lack of message
batching.

28

Findings and Lessons Learned

5. Giraph scales better across graphs;
GraphLab scales better across more machines.

64 machines TW UK

Giraph (byte array) 5.8GB 7.0GB
GraphLab (sync) 4.5GB 14GB

TW 16 machines 128 machines

Giraph (byte array) 8.5GB 5.8GB
GraphLab (sync) 11GB 3.3GB

29

Findings and Lessons Learned

5. Giraph scales better across graphs;
GraphLab scales better across more machines.

64 machines TW UK

Giraph (byte array) 5.8GB 7.0GB
GraphLab (sync) 4.5GB 14GB

TW 16 machines 128 machines

Giraph (byte array) 8.5GB 5.8GB
GraphLab (sync) 11GB 3.3GB

29

Findings and Lessons Learned

5. Giraph scales better across graphs;
GraphLab scales better across more machines.

64 machines TW UK

Giraph (byte array) 5.8GB 7.0GB
GraphLab (sync) 4.5GB 14GB

TW 16 machines 128 machines

Giraph (byte array) 8.5GB 5.8GB
GraphLab (sync) 11GB 3.3GB

29

Comparison Summary

Computation Setup Memory Network

No Mutations

Giraph (byte array)
Giraph (hash map)
GPS (none)
Mizan
GraphLab (sync)
GraphLab (async)

With Mutations (DMST)

Giraph (byte array)
Giraph (hash map)
GPS (none)

30

Summary

Comprehensive experimental comparison of four graph
processing systems, with scale.

System optimizations are critical, but some optimizations can
degrade performance.

Performance and scalability depend heavily on metric used:
there is no clear winner.

31

Summary

Comprehensive experimental comparison of four graph
processing systems, with scale.

System optimizations are critical, but some optimizations can
degrade performance.

Performance and scalability depend heavily on metric used:
there is no clear winner.

31

Summary

Comprehensive experimental comparison of four graph
processing systems, with scale.

System optimizations are critical, but some optimizations can
degrade performance.

Performance and scalability depend heavily on metric used:
there is no clear winner.

31

	Motivation
	Systems Tested
	Giraph
	GPS
	Mizan
	GraphLab

	Methodology
	Algorithms
	Datasets
	Metrics
	Setup

	Experimental Results
	Comparison Summary

