
UCSB RMP
ML-POWERED ECOSYSTEM SIMULATIONS AUG 2024

FABMLA: Framework for Agent-Based Modeling With Unity’s ML-Agents

Arvick Chandnani1†, Emma Brown2
112th, Eastlake High School, 400 228th Ave NE, Sammamish, WA 98074 USA

2Media Art & Technology Program (MAT), University of California, Santa Barbara, CA 93106 USA
†corresponding author: arvick@outlook.com

Unity3D, a free Game Engine (GE), is commonly used in academic simulations. However, Unity3D brings
a limitation: there is a lack of Agent-Based Modeling (ABM) frameworks that use the built-in ML-Agent
package. In this paper, we investigate ABM and how it can be used to model complex social systems. We
developed an ABM framework that supports custom ML-Agents implementations and is generalizable to
various scenarios. We aim to show the value of our proposed framework in its feasibility and accessibility
as a simulation resource in Unity3D. Our proposed framework creates a real-time 3D environment where
ML-Agents can interact. To assess FABMLA we recorded data including consistency, applicability, and
accessibility. Additionally, we aim to display the benefits of visual simulations in Unity3D environments
and discuss how these tools can be used in educational environments to teach younger generations and
support academic research.

Keywords: Agent-based modeling (ABM), visual simulations, Navigation, Ecosystem simulations, Framework, Unity3D

I. INTRODUCTION
The Agent-Based Modeling (ABM) paradigm simulates

complex social situations in the real world and models
crowd behavior and interactions through individual,
autonomous members within the system (Cheliotis, 2022).
It has been proven to be an effective method for simulating
complex systems (Yu, 2022; Bonabeau, 2002; Manson,
Sun, and Bonsal, 2011). For instance, Possik et al (2023)
used ABM to model an intensive care unit during the
COVID-19 pandemic, Reynolds (1987) used ABM to
model generic flock crowds, and Mls et al (2023) used
ABM to simulate responses to natural disasters.
Many modern ABM development platforms largely do

not support three dimensions. The limited platforms that do
are confined to 3D visualizations of 2D models (Cheliotis,
2021). The lack of three-dimensional capability creates
limitations when using ABM in fields requiring
three-dimensional systems. However, a development
platform that seems to be a worthwhile alternative is Game
Engines (GEs) (Cheliotis, 2021).
Modern GEs support up-to-date 3D graphics and other

features that can be used in an academic setting (Sobota and
Pietriková, 2023). A popular choice for similar studies—for
instance, in Virtual Reality (VR) (Iparraguirre-Villanueva,
2024)—is Unity3D, a free GE. Unity3D offers in-built
features such as a C# Application Processing Interface
(API), pathfinding, and physics engines that provide
sophisticated control over the underlying sub-processes of a
three-dimensional simulation (Cheliotis, 2022; Sobota and
Pietriková, 2023).
In 2020, an Agent-Based Modelling Framework for

Unity3D (ABMU) was released (Cheliotis, 2021). ABMU
is an open-source project providing Unity3D with tools to
conduct ABM simulations. It has been used successfully in

various complex social simulations (Yu, 2022; Cheliotis,
2022).
However, ABMU has a crucial limitation—it is

incompatible with Unity3D’s in-built Machine Learning
Agents Toolkit (ML-Agents). ML-Agents is a package
developed by Unity3D that enables the training of
intelligent agents (Unity Technologies, 2020), creating a
central platform for evaluating Artificial Intelligence (AI)
advancements within custom Unity3D environments.
Social system models often require agents to react to the

environment, which is especially important for human
decision-making simulations (Ghaffarzadegan et al, 2024).
Machine Learning (ML) models are ideal candidates
because of their ability to make informed decisions based
on their observations. Filling this gap and combining these
methods—ABM and ML—could open the door to more
realistic, complex, and generalizable simulations.
Furthermore, there is a surprising lack of academic research
in Unity3D’s ML-Agents in particular.
To support the recent rise of GEs, this paper proposes a

novel Framework for Agent-Based Modeling with
ML-Agents (FABMLA). FABMLA creates a real-time,
complex, visual, 3D environment where ML-powered
agents can interact. We recorded data to assess the quality
of FABMLA and ML-Agents including consistency,
applicability, and accessibility. We also discuss the benefits
of visual simulations in Unity3D and how these tools can
be used in educational and academic scenarios.

II. METHODS
A. Software Architecture
The FABMLA structure is inspired by the architecture of

ABMU; we introduce the concept of Steps, an approach
that enables behavior to be repeated throughout an episode,
a single iteration of a simulation. For example, an agent

mailto:arvick@outlook.com


UCSB RMP
ML-POWERED ECOSYSTEM SIMULATIONS AUG 2024

could move in a certain direction each Step based on a
custom algorithm. Our framework contains two core
classes: Agent and Controller. The Agent class is
responsible for managing a singular agent within a
simulation; it largely controls steps and observations (See
Section II.B). The Controller class is a singleton module
responsible for managing the overall simulation. It conducts
high-level tasks such as (re)setting the episode,
synchronizing agent steps, and managing agent rewards
(See Section II.C). An overall schematic of the FABMLA
architecture is found in FIG. 1.

B. FABMLA Agents
The Agent class manages a singular agent in a

simulation. With FABMLA, custom agents can be designed
to fit the needs of a simulation without a deep
understanding of simulation management. For more details
about FABMLA, visit the open-source GitHub page1.
Inheriting ML-Agents — The Agent class extends the

ML-Agents, exposing key features of ML-Agents in
FABMLA. Additionally, we expose key behavior
parameters; an agent could override methods and properties
without needing extensive information on internal agent
logic, allowing for generalizability. For instance, in an
ecosystem simulation, agents could modify deer-agent
behaviors, such as moving in a certain direction based on
calculated rewards and goals, while FABMLA abstracts
away implementation details and manages the internals.
Step — The virtual Step() method allows for a variety of

applications, such as simple movement actions or complex,
interactive puzzles, (See Section III), and contains
information regarding repeatable action(s) the agent
completes throughout the course of the episode, in other
words, the step an agent must take. The abstract nature of
this function allows for our controller to handle the
execution of agent Steps, without exposing agent behavior.
The non-dependent agent behavior supports generalization
allowing FABMLA to be compatible with any agent action.

C. FABMLA Controller
The Controller class is a standalone module that manages

the system and environment. The Controller class executes
high-level tasks such as initialization, instantiation, and
synchronization. Similar to the Agent class, custom
controllers are developed with FABMLA’s template. This
allows FABMLA to handle the underlying subprocesses,
while the controller handles behaviors fitted to the
simulation. For example, in a spatial sciences simulation,
the controller can declare certain qualities of the solar
system, such as the amount of planets, initial distance of
planets, gravity strength, and environmental influences and
FABMLA manages agent registration, agent-stepping,
reward distribution, and episode management.

1 https://github.com/arvickc/FABMLA

FIG. 1. FABMLA architecture schematic. Dashed rounded boxes
indicate packages, solid rounded boxes indicate classes, and solid
boxes indicate methods. Solid arrows indicate instantiations,
dashed arrows indicate function calls, and dotted arrows indicate
overrides or exposures.

Initialization — On initialization, the Controller
summons a number of agents depicted by the user. These
agents are registered to the Controller and implemented
with ML details. This allows support for multiple
simulation types including Reinforcement Learning (RL), a
training algorithm where agents are rewarded, for training
singular agents with an individual goal; Self-play, a training
algorithm where agents play against previous snapshots of
itself, for training competitive agents with a goal of
winning a game/sport; and Cooperation, a training
algorithm where agents are rewarded as a group instead of
individually, for training agents to work towards a common
goal (See Section II.D).
Agent Stepping — The Controller class is responsible

for synchronizing the steps of all agents. Once all agents
have indicated their readiness to execute their actions, the
Controller class calls the Step() method in all agents and
calculates their reward.
Rewards — Rewards are an essential part of ML,

training the agents by rewarding good actions and
punishing bad actions. The Controller class includes a
virtual method designed for a custom controller to conduct
calculations and determine rewards for each agent. This
enables complete control over agent rewarding. This
method is compatible with multiple simulation types and
called for each agent on each step.
Ending Episodes — The final responsibility for the

Controller class is to conclude each episode. The Controller
class includes a method designed for a custom controller to
declare cases in which the episode ends. For example, an
agent could go out of bounds or an agent meets the max
step count. This method is called after each step. The

https://github.com/ArvickC/FABMLA


UCSB RMP
ML-POWERED ECOSYSTEM SIMULATIONS AUG 2024

Controller class also includes an EndAll() method, which
can be called to end and reset the episode for each agent.

D. Example Development
To demonstrate the capabilities of FABMLA we designed

five unique example simulations. Each scene showcases a
different aspect of FABMLA. In the following paragraphs,
we describe how each simulation was developed and its
intended purpose.
Simple Movement — This example was developed to

test the functionalities of ML-Agents and FABMLA
compatibility. The Controller instantiates an amount of
agents. The agents cannot collide and are rewarded for
staying close to the center of their bounds (See FIG. 2A).
The agent can only observe its world position.
Simple Navigation — This example assesses the core

functionality of ML-Agents and FABMLA. The Controller,
again, instantiates an amount of agents. The agents cannot
collide and are rewarded for reaching a target cube and
punished for leaving their bounds (See FIG. 2B). The agent
can observe its and the target’s world position. This
example will be used to assess the reliability of FABMLA.
Sugarscape — Epstein and Axtell’s Sugarscape model is

a classic ABM simulation. Our version is simplified and
utilizes the following rules:

1. Agents spawn with a random amount of sugar
between 5-7

2. Agents have a random metabolism of 1-3
(subtracted from total sugar each step)

3. The agents must move each step and gain the
amount of sugar of the square they moved to

4. If two agents collide, the agent with less sugar is
removed from the simulation.

This simulation was developed to demonstrate the
interactive and parameterized abilities of FABMLA. The
Controller instantiates 32 agents on an 8 by 8 randomized
grid (See FIG. 2C). The agent can observe its direct
neighbor sugar squares, its world position, and the amount
of sugar it has. This example will also be used to assess the
consistency of FABMLA.
2D Pong — This example was developed to showcase

the self-play feature of ML-Agents and its compatibility
with FABMLA. Self-play is an ML training technique used
for competitive scenarios. The Agent plays against past
snapshots of itself, ideally getting better over time—in this
case, the agent is playing pong. The Controller instantiates
two agents (on two different teams) and launches the ball in
a random direction (See FIG. 2D). The agents can observe
its and the ball’s world position.
Cooperation Puzzle — This example was developed to

display Agent Groups. This is a ML training technique in
which agents are not rewarded individually, rather, the
agents are rewarded as a group. This process is used for
agents working towards a common goal, such as escape
rooms, coordinating routes, or patrolling/security.

FIG. 2. Screenshots of FABMLA example simulations provided in
our GitHub repo.

Additionally, this technique can be used alongside self-play
for team sports, such as soccer or volleyball. The controller
instantiates 2 agents and randomizes the location of two
pressure plates (See FIG. 2E). The agents can observe their
location and rotation and see the objects in their field of
view (through the use of Unity3D’s RayCasts).

E. Assessing FABMLA
To assess the quality of FABMLA, we recorded its (1)

consistency, (2) applicability, and (3) accessibility.
Consistency is crucial for a ML simulation—an inconsistent
simulation is not reliable and can not be applied to the real
world. To measure consistency, we recorded 5000 episodes
of three out of our five example simulations (B, D, E) and
their result. Comparing data between these examples will
yield insightful conclusions on the consistency of
FABMLA and ML-Agents. Applicability is a major
requirement of FABMLA—it enables our framework to be
generalized to different fields and expands its use cases. To
assess applicability, we discuss the implications of the
design of our framework (Section III.B). As ML
simulations advance, these features must be
accessible—this opens the door to using ML in education,
work, or products for free. To assess the accessibility of
FABMLA we analyze the process taken to develop and use
our framework.

III. RESULTS & DISCUSSION
A. Consistency
Examples (B) and (E) revealed a near, if not, 100%

Success Rate (SR). These tasks involved a puzzle (i.e.
reaching a target or pressing two plates), thus, the SR



UCSB RMP
ML-POWERED ECOSYSTEM SIMULATIONS AUG 2024

TABLE. 1. Results from 5000 episodes of examples (B), (D), and (E).

demonstrates the agent’s ability to complete the task every
time. Partnered with a relatively low Standard Deviation
(SD) we can conclude that the agents had sophisticated
behavior and extreme consistency, enabling support for
complex simulations. Example (D) was a 2D Pong
simulation (Section II.D); to declare FABMLA consistent,
we expect a high step count and ~50% success rate. The
data from this example follows this trend, supporting the
consistent nature of FABMLA. Refer to TABLE. 1. for
complete data. It is important to note: that this consistency
comes from multiple hours of training, it is expected that an
agent is inconsistent with insufficient training steps. While
we only trained our agents for <1M steps, the consistency
reached expectations for complex models, demonstrating
ML-Agents' capability as an academic resource.

B. Applicability
The generalizable nature of FABMLA allows it to be

used in various subjects. In academia, our framework can
model complex social, spatial, competitive, and interactive
systems to advance research. FABMLA features, such as
ML and visuals, can be utilized to create unique models and
methods to analyze results. In education, FABMLA can be
used to demonstrate a variety of complex systems in
multiple areas of science. The ability of visualization makes
FABMLA an easy tool for students to understand complex
situations. This is especially useful when parameters are
exposed, allowing for a variety of settings, for example,
altering initial parameters or rules of a sugarscape model
(Example C) and observing results or a physics simulation
in which students can strengthen or weaken forces (i.e.
gravity or drag) and visualize the changes in the system.

C. Accessibility
FABMLA provides an effective process for creating

ABM simulations and automatically managing internal
simulation mechanics in a Unity3D environment. Thus,
those familiar with the Unity3D GE will find FABMLA
straightforward. Those new can leverage the extensive
Unity3D online videos and documentation to familiarize
themselves with the platform. Additionally, FABMLA’s
GitHub contains detailed documentation on our framework
and its source code, allowing exploration of the inner
workings of FABMLA.
Parameters of FABMLA and ML-Agents are exposed in

the framework, allowing internal control through Unity3D’s

in-built Graphical User Interface (GUI) or custom agent(s)
and controller. Thus, FABMLA is flexible, allowing the
creation of complex models. Furthermore, FABMLA is
open-source, encouraging modification of its content to fit
modeling needs.
Finally, Unity3D, ML-Agents, and FABMLA are free

and low-intensive programs. This encourages those unable
to purchase or run demanding platforms to utilize
FABMLA, thus, increasing valuable research in ML and
creative projects powered by ML.

IV. CONCLUSION
This paper investigated the limitations of current ABM

development platforms and the useful features of GE. We
proposed a Framework for Agent-Based modeling with
Unity’s ML-Agents (FABMLA) to counter these
drawbacks. FABMLA creates a 3D, ABM training
environment and offers three key advantages: (1), its
ML-Agents implementation provides deep learning
capabilities. Additionally, the properties of FABMLA and
ML-Agents are exposed, encouraging the creation of
consistent, complex, environment-reactive, and interactive
agents. (2), FABMLA supports generalization—its abstract
nature obfuscates internal behavior, enabling compatibility
with any action. (3), its integration with Unity3D provides
unique features, allowing utilization of in-built Unity
features (3D rendering, AI pathfinding, and physics
engines).
While FABMLA brings advantages, there are some

caveats. FABMLA requires Unity3D, therefore knowledge
of Unity3D and C# is required. Additionally, due to the
limited time of this project, we were unable to pursue
certain features of FABMLA (such as Neural Network
swapping or group-based self-play)—these features could
be explored in future work. FABMLA is still in an early
stage and will likely continue to develop. It currently
supports core ABM functions, including agents, controllers,
episode management, step synchronization, and ML.
Current and future development centers around the
following goals:

1. Create a real-time, 3D, visual, interactive
environment with ML-powered agents

2. Encourage generalization and applications to
multiple disciplines

3. Demonstrate complex behavior and compatibility

Ex. MEAN STEP MODE STEP STD. DEV. SUCCESS RATE TRIALS

(B) 60.995 70 17.815 99.98% 5000

(D) 9110.968 14840 9931.82 74.3% 5000

(E) 501.37 343 342.91 100% 5000



UCSB RMP
ML-POWERED ECOSYSTEM SIMULATIONS AUG 2024

ACKNOWLEDGEMENTS
The first author would like to give thanks to Pratyush

Tripathy and Dr. Lina Kim for their support and insightful
feedback on his work. He also thanks his peers and family
for their encouragement, provision of advice, and constant
support.

REFERENCES
Bonabeau, E. (2002). Agent-based modeling: Methods and

techniques for simulating human systems. Proceedings
of the National Academy of Sciences, 99(suppl_3),
7280–7287. https://doi.org/10.1073/pnas.082080899

Cheliotis, K. (2021). ABMU: An Agent-Based Modelling
Framework for Unity3D. SoftwareX, 15, 100771.
https://doi.org/10.1016/j.softx.2021.100771

Cheliotis, K. (2022). Simulating Common Indoor Crowd
Behaviours in 3D Environments Using ABMU. 2022
International Conference on Interactive Media, Smart
Systems and Emerging Technologies (IMET), 1–4.
https://doi.org/10.1109/IMET54801.2022.9929960

Epifanía-Huerta, O. I.-V., Carlos Perez-Benito, Diego
Torres-Murga, Andrés. (2024). Application of Virtual
Reality in the Treatment of Claustrophobia in
Adolescents. International Journal of Engineering
Trends and Technology - IJETT, 72(1), 40–47.

Ghaffarzadegan, N., Majumdar, A., Williams, R., &
Hosseinichimeh, N. (2024). Generative Agent-Based
Modeling: Unveiling Social System Dynamics through
Coupling Mechanistic Models with Generative
Artificial Intelligence. System Dynamics Review,
40(1), e1761. https://doi.org/10.1002/sdr.1761

Manson, S. M., Sun, S., & Bonsal, D. (2012). Agent-Based
Modeling and Complexity. In A. J. Heppenstall, A. T.
Crooks, L. M. See, & M. Batty (Eds.), Agent-Based
Models of Geographical Systems (pp. 125–139).
Springer Netherlands.
https://doi.org/10.1007/978-90-481-8927-4_7

ML-Agents. (2024). [C#]. Unity Technologies.
https://github.com/Unity-Technologies/ml-agents
(Original work published 2017)

Mls, K., Kořínek, M., Štekerová, K., Tučník, P., Bureš, V.,
Čech, P., Husáková, M., Mikulecký, P., Nacházel, T.,
Ponce, D., Zanker, M., Babič, F., & Triantafyllou, I.
(2023). Agent-based models of human response to
natural hazards: Systematic review of tsunami
evacuation. Natural Hazards, 115(3), 1887–1908.
https://doi.org/10.1007/s11069-022-05643-x

Possik, J., Asgary, A., Solis, A. O., Zacharewicz, G.,
Shafiee, M. A., Najafabadi, M. M., Nadri, N.,
Guimaraes, A., Iranfar, H., Ma, P., Lee, C. M., Tofighi,
M., Aarabi, M., Gorecki, S., & Wu, J. (2023). An
Agent-Based Modeling and Virtual Reality Application
Using Distributed Simulation: Case of a COVID-19
Intensive Care Unit. IEEE Transactions on Engineering
Management, 70(8), 2931–2943. IEEE Transactions on
Engineering Management.
https://doi.org/10.1109/TEM.2022.3195813

Reynolds, C. W. (1987). Flocks, herds and schools: A
distributed behavioral model. SIGGRAPH Comput.
Graph., 21(4), 25–34.
https://doi.org/10.1145/37402.37406

Sobota, B., Pietriková, E., Sobota, B., & Pietriková, E.
(2023). The Role of Game Engines in Game
Development and Teaching. In Computer Science for
Game Development and Game Development for
Computer Science. IntechOpen.
https://doi.org/10.5772/intechopen.1002257

Yu, S. (2022). Agent-based modelling using survey data to
simulate occupancy patterns and occupant interactions
for workplace design. Building and Environment, 224,
109519.
https://doi.org/10.1016/j.buildenv.2022.109519

https://doi.org/10.1073/pnas.082080899
https://doi.org/10.1016/j.softx.2021.100771
https://doi.org/10.1109/IMET54801.2022.9929960
https://doi.org/10.1002/sdr.1761
https://doi.org/10.1007/978-90-481-8927-4_7
https://github.com/Unity-Technologies/ml-agents
https://doi.org/10.1007/s11069-022-05643-x
https://doi.org/10.1109/TEM.2022.3195813
https://doi.org/10.1145/37402.37406
https://doi.org/10.5772/intechopen.1002257
https://doi.org/10.1016/j.buildenv.2022.109519

