
Scalable and Privacy-Preserving
Revocation of Verifiable Credentials

Alessandro Colombo

School of Computer and Communication Sciences

Master’s Thesis

September 2024

Responsible
Prof. Serge Vaudenay

EPFL / LASEC

Supervisor
Dr. Martin Burkhart

Cyber Defence Campus

Abstract

Electronic Identification (e-ID) is being increasingly adopted worldwide, as
it offers a fast and reliable method for remote identity verification. When
building national e-ID systems, governments often adhere to the principle of
Self-Sovereign Identity (SSI), which requires citizens to have complete con-
trol over their identity data. This goal is typically achieved with verifiable
credentials, which are digital tokens signed by the issuer (e.g., the govern-
ment) and containing the identity information of the respective credential
holder. Verifiable credentials allow holders to selectively disclose the infor-
mation they wish to share, and ensure that subsequent disclosures remain
unlinkable.

In certain circumstances, governments may need to revoke some e-ID
credentials, such as when the credential’s hosting device is lost or stolen,
in cases of criminal prosecution, or if the security of the issuer has been
compromised. Popular list-based revocations approaches are not privacy-
preserving, as they require the disclosure of unique identifiers, while unlink-
able approaches are not practical enough for adoption in e-ID systems.

In this thesis, we address the challenge of revoking verifiable credentials
by proposing a privacy-preserving revocation scheme based on cryptographic
accumulators, designed to be scalable for national e-ID systems. The scala-
bility of the proposed scheme is not only limited to the Swiss e-ID instance
but could also be extended to multi-national e-ID systems, such as those in
the European Union.

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Contributions . 6

2 Background 8
2.1 Certificate Revocation in the PKI 8

2.1.1 Pull-Based Approaches 8
2.1.2 Push-Based Approaches 9

2.2 Cryptographic Accumulators 10
2.2.1 Accumulator-Based revocation 11
2.2.2 Accumulator Definition 12
2.2.3 Security Properties . 13

3 Revocation in the Swiss e-ID Setting 15
3.1 Setting . 15

3.1.1 Entities . 15
3.1.2 Swiss e-ID Proposals 16
3.1.3 Requirements . 17
3.1.4 Our Work . 18

3.2 Related Work on Privacy-Preserving Revocation 18
3.2.1 Initial Remarks . 19
3.2.2 Notation . 19
3.2.3 Merkle Hash-Trees . 19
3.2.4 RSA accumulators . 20
3.2.5 Paring-Based accumulators 20

4 Building a Dynamic Accumulator with Efficient Update 23
4.1 Notation . 23
4.2 Preliminary Construction of our Accumulator Scheme 24

4.2.1 Our Preliminary Accumulator Scheme 24
4.2.2 Theoretical Analysis 26
4.2.3 Software Implementation 27
4.2.4 Limitations of the Scheme 28

1

4.3 Adding Unlikability via ZK Proofs of Membership 30
4.3.1 Unlikable Proofs of Memebrship 30
4.3.2 Adding ZK Proofs of Membership 30
4.3.3 Theoretical Analysis 31
4.3.4 Software Implementation 32

4.4 Adding Support for Batch Operations 33
4.4.1 The update problem 33
4.4.2 Polynomials for Batch Updates 34
4.4.3 On Efficient Polynomial Evaluation Techniques 35
4.4.4 Aggregating Multiple Batches 37
4.4.5 Adding Support for Batch Updates 38
4.4.6 Soundness of the Extended Construction 39
4.4.7 Theoretical Analysis Evaluation 40
4.4.8 Software Implementation 41

4.5 Improving Update Scalability with Revocation Epochs 45
4.5.1 On the Communication Overhead of Witness Updates 45
4.5.2 Limiting Maximum Updates with Revocation Epochs 45
4.5.3 Adding Revocation Epochs 46
4.5.4 Theoretical Analysis 46
4.5.5 Practical Advantages of Revocation Epochs 47
4.5.6 Remaining Limitations 49

5 Credential Scheme with Privacy-Preserving Revocation 50
5.1 A Protocol for Binding Membership Proofs and BBS Proofs . 50

5.1.1 Setting . 50
5.1.2 Protocol Description 51

5.2 Digital Credential Scheme with Accumulator-Based Revocation 53
5.2.1 A BBS Credential Scheme with Accumulator Based

Revocation . 53
5.2.2 Modular Construction for Adaptively-Sound Accumu-

lators . 55
5.2.3 On the Adaptive Soundness of our Scheme 56
5.2.4 On Holders Unlinkability 56

5.3 Security Analysis of the Binding Protocol 57
5.3.1 Soundness . 57
5.3.2 Zero-Knowledge . 60

6 Private Information Retrieval for Updating Witnesses 62
6.1 Introduction . 62
6.2 Single-Server PIR Schemes 63
6.3 2-Server PIR for Efficient Witness Update 64

6.3.1 Distributed Point Functions 64
6.3.2 2-Server PIR from DPFs 66
6.3.3 Using 2-Server PIR for Anonymous Witness Update . 67

2

6.3.4 Experimental Results 68
6.3.5 An Alternative Update Strategy 71

7 Conclusion 73
7.1 Improvements to Related Works 73
7.2 Conclusions . 75

3

Chapter 1

Introduction

1.1 Motivation

In today’s internet, the most widespread identification paradigm is Single
Sign-On (SSO). This system allows users to access multiple services with a
single set of credentials. A group of Identity Providers (idPs), often operated
by private entities, provides authentication services to the entire world. Sin-
gle Sign-On has reduced users ”password fatigue”, and shifted the respon-
sibility of managing online identification from single service providers to
idPs, which typically have larger budgets for securing their systems. How-
ever, centralizing the identification process places digital identities in the
hands of idPs, who have the potential to monitor users online activities for
commercial or political purposes.

Electronic Identification (e-ID) is a technology that enables secure and
reliable verification of user identities. When developing national e-ID sys-
tems, governments often adhere1 to SSI principles2. To align with these
principles, e-ID credentials should grant users complete control over their
own identity data, similar to how they control their physical identification
documents, and do so without involving any third-party intermediaries.

In an increasingly digitalized world, e-ID can simplify access to a wide
range of services, without requiring in-person identification. This includes
government portals, electronic voting, digital driving license, and healthcare
services. Reducing the need to present physical documents can have a broad
impact on our society. In emergency situations, such as during pandemic cri-
sis, a national e-ID offers a fast and reliable identification method, ensuring
prompt access to essential services. Furthermore, it ensures that communi-
ties living in rural areas have access to the same digital services available
to the urban population. The e-ID can also be used to establish trustwor-
thy commercial interactions, providing online businesses with a foundational

1e.g., https://www.eid.admin.ch/en/technology
2https://www.lifewithalacrity.com/article/the-path-to-self-soverereign-identity/

4

https://www.eid.admin.ch/en/technology
https://www.lifewithalacrity.com/article/the-path-to-self-soverereign-identity/

identification infrastructure.
The European Union has been a pioneer in implementing digital iden-

tities, launching several pilot projects3, and establishing a legal framework
that regulates digital authentication across all its member states [Par14].
However, the EU’s most recent technical proposal for digital credentials
known as ARF 1.4.0 [Eur23], has been highly criticized in an open letter
signed by some of the most prominent cryptographers and privacy experts
working in the field [Bau+24]. Their primary concern is about the proposed
credential schema, which is linkable both towards the issuing entity (e.g, the
government), and the relying entities (e.g., online service providers). When
unlinkability is not ensured, online businesses can act as ”virtual stalkers”,
tracking users’ activities and linking different pieces of disclosed information
over time, progressively de-anonimyzing users identity. As a solution, the
open letter advocate for the adoption of anonymous credentials, a type of
verifiable credentials that is unlinkable by design.

The Swiss Federal Council plans to introduce a national e-ID by 2026,
which should be available to all people living in Switzerland, as well as
Swiss citizens living abroad. As of today, the Swiss e-ID community is likely
to pursue4 a stack with two credential formats: one that complies with
the European ARF and is based on standard and well-known technologies
(Scenario A in their proposal), and an alternative format which achieves
higher levels of privacy and responds to the linkablity concerns of the EU’s
prorposal implementing anonymous credentials (Scenario B).

However, revoking anonymous credentials remains an open problem: cur-
rent revocation methods do not ensure unlinkability, while privacy preserv-
ing solutions seem to lack the scalability required for national e-ID systems.
This thesis aims to address the revocation problem in the Swiss e-ID system,
by developing a practical and unlinkable revocation scheme.

We devised an accumulator-based revocation scheme that provides effi-
cient updates, improving the state of the art performances. Considering 10M
credentials and a 2% rate of yearly revocations, we reduced the overhead of
updating witnesses after a month of inactivity (i.e., 16.5K revocations) to
less than 0.4s on a laptop, compared to the 1.4s required by previous ap-
proaches. Furthermore, we proposed two methods for limiting the maximum
number of updates that holders need to compute after long offline periods.
The first method limits the cost of updating to 0.1s, at the cost of down-
loading weekly updates of 48B. Under a different threat model, the second
method removes the need of downloading periodic updates, while achieving
similar update complexity.

The technical scalability of the identified accumulator-based revocation

3ec.europa.eu
4https://github.com/e-id-admin/open-source-community/blob/main/

tech-roadmap/tech-roadmap.md

5

https://ec.europa.eu/digital-building-blocks/sites/display/EUDIGITALIDENTITYWALLET/The+many+use+cases+of+the+EU+Digital+Identity+Wallet
https://github.com/e-id-admin/open-source-community/blob/main/tech-roadmap/tech-roadmap.md
https://github.com/e-id-admin/open-source-community/blob/main/tech-roadmap/tech-roadmap.md

solutions is not limited to small or medium-sized nations but could also be
extended to larger settings, such as those in the European Union. We hope
that, by demonstrating the feasibility of privacy-preserving revocation meth-
ods, we can contribute in rendering anonymous credentials more appealing
to stakeholders and decision-makers.

1.2 Contributions

In this thesis we primarily focus on studying accumulator-based revocation,
assessing and improving its scalability potential. In our e-ID scenario, an
accumulator represents a set of non-revoked credential holders. Each holder
can show non-revocation of his credential by proving membership in the set
of non-revoked credentials. These membership proofs are zero knowledge
(ZK), and therefore unlinkable. However, when credentials are revoked the
accumulator value must change, requiring every credential holder to update.
This update process has been identified as the main scalability obstacle, as
it demands computationally expensive operations from the holders.

In the following, we list the primary contributions of this thesis:

- In Section 4.2, we provide an open-source implementation of a popular
pairing-based accumulator scheme [KB21], highlighting its shortcom-
ings;

- In Section 4.3, we substitute a popular Σ-protocol typically used for
proving membership in pairing-based accumulators with a more ef-
ficient protocol, that was recently proposed in the context of BBS
disclosure proofs [TZ23]. In our implementation, we show that this
translates into a 10× improvement;

- In Section 4.4, we optimize the batch update technique introduced in
[VB22], adopting Pippenger’s approach for efficient polynomial eval-
uation. In our implementation, we registered between 3 and 4× im-
provement compared to previous approaches.

Furthermore, we propose a novel approach for efficiently aggregating
multiple updates in a single batch. Consequently, we eliminate the
Issuer’s need of generating expensive update polynomials that required
quadratic complexity in the update size;

- In Section 4.5, we propose a method for limiting the penalty imposed
to offline users, using periodic update distribution. Our final accu-
mulator construction was presented at the Cyber-Alp Retreat event
organized by the Cyber Defence Campus. Furthermore, we discussed
our approach with the Swiss e-ID team, that decided to include the
efficient membership proofs in the specification draft for accumulator-

6

based revocation5;

- In Section 5.1, we integrate our accumulator-based revocation scheme
to BBS signatures, proposing a Σ-protocol that binds accumulator’s
membership proofs to BBS presentations. The idea for the protocol
was suggested by Jonas Niestroj from the e-ID team, while in this
thesis we formalize it and proved security of the resulting Σ-protocol.

Furthermore, we show that this binding inherently increases the se-
curity properties of our accumulator, without requiring the additional
static signature adopted by previous approaches;

- In Section 6.3, we apply double-server Private Information Retrieval
(PIR) techniques as an alternative update solution for our e-ID holders
(Section 6.3). In a software implementation, we show that for 223

credentials, this only requires ≈ 1 ms of user computation and less
than 1 kilobyte of communication.

5https://github.com/e-id-admin/open-source-community/tree/main/

tech-roadmap/rfcs

7

https://github.com/e-id-admin/open-source-community/tree/main/tech-roadmap/rfcs
https://github.com/e-id-admin/open-source-community/tree/main/tech-roadmap/rfcs

Chapter 2

Background

In this chapter, we give some notions on different revocation approaches.
First we explain how revocation is typically enforced in today’s Public Key
Infrastructure (PKI) (Section 2.1). Then, we give some background on cryp-
tographic accumulators (Section 2.2).

2.1 Certificate Revocation in the PKI

Before starting to evaluate alternative ways for revoking e-ID credentials,
we illustrate how certificate revocation is enforced in today’s internet.

Due to the massive amount of digital certificates existing in the PKI, re-
vocation already have to scale to hundreds of millions of certificates. These
numbers are (at least) an order of magnitude larger than what we expect
for a medium-small country as Switzerland. However, as we discuss in Sec-
tion 3.2, PKI methods lack some of the privacy guarantees required for our
e-ID setting.

2.1.1 Pull-Based Approaches

In pull-based approaches, clients query revocation information on-demand,
just before visiting a specific domain. Therefore, these methods typically
require an extra round-trip for verifying certificate validity. The standard
ways for checking revocation status of X.509 certificates are Certificate Re-
vocation Lists (CRLs), and the Online Certificate Status Protocol (OCSP).

Certificate Revocation List

A CRL is a static file which includes the list of all digital certificates revoked
by a specific Certificate Authority (CA). CAs regularly updates their CRL
to include newly revoked credentials. Each list is signed by the respective
CA and is downloadable from well-known distribution points, which are
indicated in every certificate issued by that CA. When the client’s browser

8

encounters a new certificate, it downloads the CRL from the respective
distribution point and checks that the certificate is not included in the list.
Each CRL specifies a validity time and can be cached by the browser; in
this way the user avoids re-downloading the CRL each time he encounters
certificates issued by a given CA.

The main downside of CRLs are client’s bandwidth and storage require-
ments, for instance in 2015 Apple’s CRL had a size of over 76MB [Liu+15].
Obviously, CAs could split the revocation list into multiple CRLs to reduce
sizes, however, when lists are too small, a client may need to download a new
list every time he encounters a new certificate, even if he has already cached
a valid CRL for that CA. Consequently, revocation lists for large CAs often
weight several megabytes. At the time of writing, an Apple’s CRL, and a
DigiCert’s CRL weight around 2MB 1 and 7MB 2 respectively.

Online Certificate Status Protocol

OCSP is a web service protocol that, with respet to CRLs, provides a more
scalable way for checking non-revocation of single certificates. The CA
includes in each issued X.509 certificate the URL of a designated OCSP
server. To check for non-revocation of a certificate, clients can query the
linked OCSP server, specifying the unique certificate ID. OCSP responses
are signed by the CA and contain a binary answer. Responses also indicate
a validity period; web browsers can cash them to avoid repeating the same
queries for a certain period of time.

From the client side perspective, OCSP has two important drawbacks:
(1) CAs can learn the client’s browsing habits by looking at the domain
name of the certificate for which non-revocation is being checked, and (2) the
protocol is vulnerable to downgrading attacks in which an attacker suppress
the OCSP response, the subsequent time-out results in ”soft failure” (i.e.,
client accesses the website without checking for non-revocation). OCSP-
stapling and the must-staple header was introduced to solve the last issue,
however it requires to be actively adopted by every webserver.

2.1.2 Push-Based Approaches

Because of the severe limitations of pull-based approaches, web browser re-
cently started exploring push-based alternatives. In push-based approaches,
the web browser proactively downloads and caches revocation information
that the client will use to check for non-revocation without online overhead.
In the following we describe three important examples.

1http://crl.apple.com/wwdrca.crl
2http://crl3.digicert.com/DigiCertGlobalG2TLSRSASHA2562020CA1-1.crl

9

http://crl.apple.com/ wwdrca.crl
http://crl3.digicert.com/DigiCertGlobalG2TLSRSASHA2562020CA1-1.crl

Browser Updates

This technique involves the browser vendor, which centrally gathers revo-
cation information and distribute them by periodically pushing browser
updates to the clients. Two instances of this method are OneCRL and
CRLSets, which are provided by Firefox and Chrome respectively. As storing
complete revocation information would require from hundreds of megabytes
up to several gigabytes [Lar+17], the updates only include sets of critical
revocations. For example, OneCRL updates only include intermediate CA
revocation and a few manually selected others 3. Despite being efficient,
those methods only map a small percentage of the total number of revoked
credentials. At the time of writing, both methods include only a few thou-
sands revocations and the updated lists occupies roughly 20KB/600KB for
CRLSets and OneCRL respectively.

CRLite

CRLite adopts probabilistic data structures (i.e., Bloom filters [Blo70]) to
concisely store revocation information for the entire PKI credential space.
A central entity (e.g., the browser vendor) obtains the revocation status for
all non-expired certificates contained in the Certificate Transparency (CT),
using public CRLs or OCSP queries. Then, he uses Bloom filters to represent
the set of revoked certificates. As a single Bloom filter would produce some
false positives due to collisions, a cascade of additional layers is attached
until no more false positives are left (see [Lar+17] for details). Some version
of Firefox already implement CRLite, furthermore Mozilla has announced
that he plans to adopt CRLite as primary revocation mechanism in the
future 4. At the time of writing, Mozilla’s full CRLite list occupies roughly
19.5MB, while update files (generated every 4 hours) are around 200KB 5

2.2 Cryptographic Accumulators

A cryptographic accumulator is a data structure that offers a concise repre-
sentation of a set of elements, and provides secure membership testing. The
set of elements represented by an accumulator is called accumulated set.
A witness is an additional piece of information that allows to prove (non-
)membership of a specific element in the accumulated set. Some accumula-
tors are ZK-friendly, meaning that they support proofs of (non-)membership
that hide the specific element for which the proof was generated.

3https://wiki.mozilla.org/CA/Revocation_Checking_in_Firefox#OneCRL
4https://wiki.mozilla.org/CA/Revocation_Checking_in_Firefox#CRLite
5Measured with https://github.com/mozilla/moz_crlite_query/tree/main

10

https://wiki.mozilla.org/CA/Revocation_Checking_in_Firefox#OneCRL
https://wiki.mozilla.org/CA/Revocation_Checking_in_Firefox#CRLite
https://github.com/mozilla/moz_crlite_query/tree/main

2.2.1 Accumulator-Based revocation

Accumulators have been frequently adopted for handling revocation in anony-
mous credentials schemes (e.g., [CV02; CL02; CKS09; KC21]).

The general idea is the following: an accumulator maps the set of non-
revoked credentials. When new credentials are issued, a unique credential
identifier is added to the accumulator, and a membership witness is provided
to the new credential holder. Similarly, when credentials need to be revoked,
the associated element is removed from the accumulator. Only holders that
are associated to currently accumulated credentials, can use their witnesses
to produce a valid membership proof. Therefore, proving membership in
the accumulator is equivalent to proving non-revocation.

A similar approach can be used if we let the accumulator map a set
of revoked users. Credential holders would then receive non-membership
witnesses, and proving non-revocation would be equivalent to showing non-
membership in the accumulator.

Accumulators can be classified based on the type of proofs they support:
positive accumulators only support membership proofs, negative accumu-
lators only support non-membership proofs, while universal accumulators
support both.

Some accumulators also supports efficient modifications to the accumu-
lated set. Accumulators are called additive when they only support addition
of new elements, negative when they only support removals, and dynamic
when they support both additions and removals.

Depending on the trust settings, we can have trapdoor-based and trapdoor-
less accumulators. Trapdoor-based accumulators are managed by a single
entity, often called revocation manager, which controls the accumulator’s
trapdoor. Efficient additions/deletions of elements and witness issuance re-
quire knowledge of the accumulator’s trapdoor, hence the accumulator man-
ager is the only entity that can enforce them. On the contrary, trapdoor-less
accumulators support public additions and deletions, and autonomous is-
suance of witnesses. However, operations are typically more expensive than
with trapdoor-based accumulators.

In this thesis we focus on positive dynamic accumulators in the trapdoor-
based setting. Our choice is due to the following reasons:

1. in a national e-ID, numerous users will presumably be added/revoked
overtime. Consequently, we need the accumulator to be dynamic;

2. membership proofs/witnesses are generally much more efficient to com-
pute/update then their non-membership counterparts. As revocation
can be achieved in both ways, we prefer using positive accumulators;

3. in anonymous credential systems, a single entity (i.e., the issuer) is
typically entitled of adding/revoking credentials. In the Swiss e-ID, the

11

only entity entitled of issuing e-ID credential is the Swiss Government
(for details, see Section 3.1). Hence, trapdoor-less solutions do not fit
our requirements;

In Section 3.2, we will analyize more in detail some specific accumulator
instances.

2.2.2 Accumulator Definition

In this section, we give the definition of a positive, dynamic accumulator.
Our definitions are mainly based on those provided in [KL24]. In addition,
we label each function according to the entity executing it:

• the credential issuer is denoted as I;

• a credential holder is denoted as H;

• a credential verifier is denoted as V.

Definition 2.2.1 (Positive Dynamic Accumulator). A positive dy-
namic accumulator is a set of algorithms (GenI ,AddI ,DelI ,WitUpAddH,
WitUpDelH,VerifyWitV) defined as follows:

• GenI(1
λ) → (acc0, sk, pp, st0): this algorithm initializes the system.

It takes as input the security parameter λ, and outputs an empty ac-
cumulator acc0, the accumulator’s secret key sk, the public parameters
pp (e.g., describing the accumulator’s domain), and the initial issuer’s
state st0;

• AddI(sk, acct, x, stt)→ (Vt+1, wx,t+1, upmsgt+1, stt+1): this algorithm
adds a new element x to the accumulated set. It takes as input accu-
mulator’s secret key sk, and the current accumulator value acct. It
returns the new accumulator value acct+1, a membership witness for
the wx,t+1 for the added element x, an update message upmsgt+1, and
the new issuer’s state stt+1.

• DelI(sk, acct, x, stt) → (acct+1, upmsgt+1, stt+1): this algorithm re-
moves an element from the accumulated set. It takes as input the se-
cret key sk, the current accumulator value acct, an element x that was
previously added to the accumulator, and the issuer’s state stt. The
function returns the new accumulator value acct+1, an update message
upmsgt+1, and the new issuer’s state stt+1;

• WitUpAddH(acct+1, acct, x, wx,t, upmsgt+1)→ wx,t+1: this algorithm
updates the witness of an accumulated element after a single addition
event. It takes as input the current and the old accumulator values
acct + 1 and acct, the element x and its respective witness wx,t, and
the update message upmsgt+1. It returns the updated witnesses wx,t+1;

12

• WitUpDelH(acct+1, acct, x, wx,t, upmsgt+1)→ wx,t+1: this algorithm
updates the witness of an accumulated element after a single deletion
event. It takes as input the current and the old accumulator values
acct+1 and acct, the element x and its respective witness wx,t, and the
update message upmsgt+1. It returns the updated witnesses wx,t+1;

• VerifyWitV(acct, x, wx,t) → 0/1: this algorithm tests membership of
element x in the accumulator acct. It takes as input the current ac-
cumulator value acct, the element x and its respective witness wx,t. It
returns 1 if wx,t is a valid membership witness for x and 0 otherwise.

2.2.3 Security Properties

The cryptographic accumulator defined in Definition 2.2.1 must satisfy cor-
rectness and soundness to be considered secure. Correctness implies that
the honest holder of an up-to-date witness can succesfully proof membership
of the respective element in the accumulator. Soundness implies that an ad-
versary with oracle access to the accumulator’s addition/deletion functions
cannot produce a valid witness for a non-accumulated element. We consider
two levels of soundness: non-adaptive soundness (Definition 2.2.2) requires
the attacker to commit the list of elements that will be added to/removed
from the accumulator in advance. Adaptive soundness (Definition 2.2.3),
is a stronger notion where the adversary can adaptively pick elements to
add/remove. As the formulation of correctness is straightforward, in the
following we only write definitions for (non-)adaptive soundness, which are
based on those provided in [KB21].

Definition 2.2.2 (Non-Adaptive Soundness). For a security parameter
λ, and all probabilistic polynomial time (PPT) adversaries A with black-box
access to the addition/deletion oracles OAdd,ODel on an accumulator for
a dynamic set S with changing value V, let LA, LD respectively be the list
of additions and deletions that A submits ahead of time. There exists a
negligible function negl(·) such that:

Pr


{(x1, . . . , x|A|) ∈ LA, (x1, . . . , x|D|) ∈ LD, } ← A(λ);

(acc0, sk, pp, st0)← GenI(1
λ);

(x,wx,t)← AOAdd,ODel(acc0);

x /∈ S′ : VerifyWitV(acct, x, wx,t) = 1

 ≤ negl(λ)

Where S′ denotes the updated accumulated set after addition/deletion queries.
The addition oracle OAdd returns nothing when asked to add an element
x ∈ S′ or x /∈ LA, while the deletion oracle ODel returns nothing when
asked to delete an element x /∈ S′ or x /∈ LD.

13

Definition 2.2.3 (Adaptive Soundness). For a security parameter λ,
and all PPT adversaries A with black-box access to the addition/deletion
oracles OAdd,ODel on an accumulator for a dynamic set S with changing
value V. There exists a negligible function negl(·) such that:

Pr

 (acc0, sk, pp, st0)← GenI(1
λ);

(x,wx,t)← AOAdd,ODel(acc0);

x /∈ S′ : VerifyWitV(acct, x, wx,t) = 1

 ≤ negl(λ)

Where S′ denotes the updated accumulated set after addition/deletion queries.
The oracles OAdd,ODel return nothing when asked to add an element x ∈ S′,
or to delete an element x /∈ S′.

Additionally, we report the definition of q-Strong Diffie-Hellman (q-SDH)
assumption. The q-SDH assumption is relevant for us, as it is used to prove
correctness of the pairing-based accumulators we consider in Section 3.2.

Definition 2.2.4 (q-Strong Diffie Hellman Assumption). Let G1,G2

be two cyclic groups of prime order p, respectively generated by G1, G2, and
x←$Zp be a randomly chosen element. Any PPT adversary A on input

(G1, xG1, . . . , x
qG1) has negligible probability of computing a pair

(
1

(x+c)G1, c
)
,

for some freely chosen c ∈ Zp.

14

Chapter 3

Revocation in the Swiss e-ID
Setting

3.1 Setting

In this section, we first present the entities involved in the Swiss e-ID (Sec-
tion 3.1.1). Then, we describe the two credential formats proposed by the
e-ID team (Section 3.1.2), and discuss which one we consider in this thesis
(Section 3.1.4). Finally, we list the requirements that a revocation scheme
needs to satisfy to be adopted in the Swiss e-ID (Section 3.1.3).

3.1.1 Entities

The e-ID setting involves the participation of three distinct entities:

• issuer: the only entity entitled to issue e-ID credentials. In the context
of e-ID, the issuer is identified with the Swiss government, and it is
assumed to have high (e.g., enterprise-level) resources;

• holder: a Swiss citizen or any other subject entitled to possess a Swiss
e-ID. The holder obtains his e-ID from the issuer and he is assumed
to be resource-constrained (e.g., bound to a few computation seconds
on a smartphone);

• verifier: a service provider enrolled in the e-ID ecosystem. The veri-
fier decides whether to provide his services to a specific holder depend-
ing on whether the holder’s credential satisfies his policy (e.g., holder
is > 18 y.o.).

15

3.1.2 Swiss e-ID Proposals

The Swiss e-ID community1 has selected two alternatives for e-ID creden-
tials, their design is depicted in Scenario A (Figure 3.1) and Scenario B
(Figure 3.2). Scenario A uses a subset of technologies included in the ARF
[Eur23], and prioritize compatibility with the Electronic IDentification, Au-
thentication and trust Services (eIDAS) implementation. On the other hand,
Scenario B adopts a set of privacy-preserving technologies to address the
linkability concerns that were pointed out for eIDAS 2.0 [Bau+24]. In the
following, we briefly analyze both scenarios, focussing on the proposed re-
vocation strategy(s).

Scenario A

Figure 3.1: Scenario A

Scenario A (Figure 3.1) is based on classic RSA/ECDSA signatures, and
adopts the SD-JWT credential format [FYC24]. In brief, SD-JWT provides
selective disclosure by attaching to the credential the (salted) hash of all
the holder’s attributes/claims. On credential presentations, the holder only
discloses with the verifier the openings for the attributes he intends to proof.

The proposed revocation method is a simple status list, in which each
entry represents the revocation status of a given credential. On presenta-
tions, the holder discloses the position of his credential in the status list.
Then, the verifier checks that the entry respective to the holder’s credential
is marked as non revoked.

Privacy considerations Both the presentation and revocation methods
proposed in this scenario suffer from linkability issues:

1https://github.com/e-id-admin/open-source-community/blob/main/

discussion-paper-tech-proposal/discussion-paper-tech-proposal.md

16

https://github.com/e-id-admin/open-source-community/blob/main/discussion-paper-tech-proposal/discussion-paper-tech-proposal.md
https://github.com/e-id-admin/open-source-community/blob/main/discussion-paper-tech-proposal/discussion-paper-tech-proposal.md

- on credential presentation, the holder discloses the signature and hashed
digests of attributes contained in his credential. This data constitute
a unique fingerprint of the holder’s credential, and allow a verifier to
link subsequent presentations from the same holder. Collusion be-
tween multiple verifiers could simplify de-anonymization, and enable
tracking of holders online behaviors;

- on credential revocation, the entry of the credential in the status list
changes from ”not revoked” to ”revoked”. As the status list is pub-
lic, each verifier can memorize the positions of credentials that were
presented to him, and track any status change. Furthermore, the po-
sition of a credential in the status list constitutes an additional unique
identifier.

Scenario B

Figure 3.2: Scenario B

Scenario B (Figure 3.2) is based on BBS signatures [Loo+23], and adopts
the JSON-LD format [Spo+20] for credential representation. Contrarily to
the RSA/ECDSA signatures adopted by Scenario A, BBS signatures intrin-
sically provide selectively disclosure of the credential’s attributes in a zero-
knowledge way. Holder’s proofs are randomized in such a way that even
colluding verifiers cannot link them. The choice of the revocation method
is still open, they propose three option: cryptographic accumulators, status
lists, and validity credentials.

3.1.3 Requirements

In this section, we list the three main requirements of our e-ID scenario. A
new revocation mechanism needs to preserve all these requirements to be

17

considered adoptable:

R1. the issuer has no knowledge on if or how the verifiable credentials it
issued are used;

R2. a verifier should not be able to link multiple presentations of the same
credential, even by colluding with other verifiers;

R3. it must be possible to revoke a credential within 24h.

Requirement R1 preserves holder’s unlinkability towards the issuer. So-
lutions that require the issuer’s participation in the credential presentation
process leak sensitive metadata and are discouraged by the Swiss e-ID draft
Act 2.

Requirement R2 preserves holder’s unlinkability towards the verifier. As
Scenario B adopts BBS+ signatures and Zero Knowledge Proofs (ZKPs) to
achieve unlinkable presentations, we do not consider revocation schemes that
prove non-revocation by disclosing unique identifiers (e.g., classic CRLs).
This requirement does not include unique identifiers that are possibly dis-
closed as part of the presentation (e.g., name and date of birth).

Regarding R3, both European e-ID regulations3 and PKI baseline re-
quirements4 concur on requiring that revocations must be enforced within
24 hours upon receiving the revocation request. Given the absence of spe-
cific indications, it seems reasonable to extend the same requirement to the
Swiss e-ID scenario.

3.1.4 Our Work

Since the linkability concerns in Scenario A are inherent to the credential
format, we see little advantages in implementing a privacy-preserving revo-
cation method. Therefore, the rest of this thesis will focus on identifying
a scalable and privacy-preserving revocation method for credentials of the
type described in Scenario B.

3.2 Related Work on Privacy-Preserving Revoca-
tion

In this section, we study the related works on unlinkable revocation, aiming
to identify some methods that are applicable to the e-ID setting we have
just introduced in Section 3.1.

2Article 7.8, www.fedlex.admin.ch
3Article 24, eur-lex.europa.eu
4Section 4.1.1, cabforum.org

18

https://www.fedlex.admin.ch/eli/fga/2023/2842/de
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32014R0910
https://cabforum.org/working-groups/server/baseline-requirements/documents/TLSBRv2.0.4.pdf

3.2.1 Initial Remarks

For applicability in our e-ID scenario, a revocation method must preserve
the unlinkability of BBS presentations. All the PKI methods discussed in
Section 2.1 require the holder to disclose a unique identifier with the verifier.
Non-revocation is verified either by checking the holder’s identifier against a
set of revoked IDs (CRLs, CRLSets, OneCRL, and CRLite), or by querying
the issuer directly (OCSP). With both approaches, subsequent presentations
of the same credential can be linked through the disclosed identifier. This
renders the above methods incompatible with our privacy requirements (R2).

Some works have obtained unlinkable revocation with ephemeral cre-
dentials, or periodic update (e.g., [CKS10; CDH16]). Our requirements
stipulate that revocations must be executed within 24 hours (R3). Since the
latter methods do not support direct revocation, enforcing timely revoca-
tion would necessitate issuing short-lived credentials. Consequently, holders
would need to frequently contact the issuer for updates or re-issuance, re-
sulting in significant computational and communication overhead for the
system. From a privacy perspective, this ’call-home’ behavior leaks timing
metadata, as holders update their credentials just before presenting them.

On the other hand, cryptographic accumulators provide instant revoca-
tion and allow valid holders to produce unlinkable proofs of non-revocation.
Credential holders can autonomously update their witness,without further
interaction with the issuer (i.e., avoiding to call-home). The key scalabilty
factors in an accumulator-based revocation scheme are the communication
and computational overhead that such updates impose on holders. In the
following, we evaluate some practical implementations of the accumulators
introduced in Section 2.2, specifically Merkle hash-trees, pairings-based, and
RSA-based accumulators.

3.2.2 Notation

Henceforth, we let |a| denote the number of elements added to the accumula-
tor, |d| the number of deleted elements, m the total number of modifications
to the accumulator value, and N the number of non-revoked users in the
system.

3.2.3 Merkle Hash-Trees

Recently, numerous credential schemes combining Merkle hash-trees with
with Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zk-
SNARK) protocols have been proposed (e.g., [BS23; Ros+23]). These schemes
make use of general-purpose ZKPs to support arbitrary predicate proofs
(e.g., proof geo-location [BS23]), at the expense of imposing additional com-
putational burden on provers (i.e., credential holders).

When it comes to membership proofs, RSA and pairing-based accumula-

19

tors provide efficient O(1) proofs, while Merkle trees incur a cost of Ω(logN).
Furthermore, to anonymously update his witness, a holder would need to
download the entire Merkle tree that contains the set of non-revoked cre-
dentials. As a practical reference, in [BS23] holders download several MB
per single update. As noted by the authors, holders can limit the update
size by selectively retrieving one of the sub-trees containing their credential.
however this proportionally reduces the anonimity set of the update. For
instance, fetching just the left (or right) sub-tree halves the anonimity set,
while fetching a specific roof-to-leaf path reduces the anonimity set to the
number of credentials contained in the leaf (e.g., in [BS23] each leaf stores
253 credentials).

3.2.4 RSA accumulators

The earliest accumulator construction introduced by Benaloh and de Mare
[BD93] was based on RSA accumulators. The authors picked an RSA mod-
ulus n, and a random accumulator acc∅←$Z∗n. To accumulate a set of el-

ements S = {e1, . . . , em}, one would compute accS ← acc∅

∏
ei∈S ei , while

the membership witness for an element e ∈ S was defined as wite ←
acc

∏
ei∈S\{e} ei , such that (wite)

e = accS . The initial construction supported
efficient additions only, and soundness was guaranteed only when accumulat-
ing prime elements. Subsequently, Camenisch and Lysyanskaya [CL02] im-
proved the initial construction, adding support for efficient deletions and un-
linkable membership proofs. Baldimtsi et al. [Bal+17], eliminated the need
of updating on additions of new elements, proposing Braavos, an RSA accu-
mulator with communication-optimal O(|d|) updates. Among their contri-
butions, the authors presented a modular construction for building dynamic
accumulators with strong security, integrating a static accumulators with
strong security, and a dynamic accumulator with weaker security. All these
works were limited in accumulating prime elements only. Consequently,
adding a non-prime element to the accumulator involved expensive hash-
to-prime operations. In a recent work, Kemmoe and Lysyanskaya [KL24]
developed an RSA-based accumulator that does not require accumulated ele-
ments to be represented as prime numbers. According to their benchmarks,
this translates in around 2× performance improvements when computing
modular exponentiations.

3.2.5 Paring-Based accumulators

In the pairing setting, the most popular accumulator is due to L. Nguyen
[Ngu05]. Nguyen’s accumulator is positive, dynamic, and adaptively sound
under the q-SDH assumption (Definition 2.2.4). Unlike RSA accumulators,
Nguyen’s accumulator is defined on a group G of well-known prime order
p, with a symmetric bilinear pairing map ẽ : G × G → Gm. Given an

20

accumulator accS ∈ G, additions of an element e requires knowledge of the
accumulator’s trapdoor sk←$Zp, which is summed to the new element and
used to produce a new accumulator accS∪{e} ← (sk + e) · accS . Similarly,
deletion of an element e requires dividing the accumulator by (sk + e), i.e.,
accS\{e} ← (sk + e)−1 · accS . The membership witness for an accumulated
element e ∈ S is defined as wite ← (sk + e)−1accS . Direct membership
verification is possible by checking (sk+e) ·wite = accS , however it requires
knowledge of the accumulator’s trapdoor sk. Instead, thanks to the bilinear
properties of the pairing, membership in the accumulator can be verified by
checking ẽ(wite, e · g1+ pk) = ẽ(accS , g2), where pk ← sk · g1, and g1, g2 ∈ G
are fixed generators. The author also proposes a Σ-protocol for verification
of the latter pairing equation5, hiding the value of the holder’s element e
and associated witness wite.

Karantaidou et al. follow the work in [Bal+17] to propose a communication-
efficient construction of [Ngu05], with O(|d|) update complexity [KB21]. On
trapdoor-based setting, [KB21] enables more efficient operations than RSA
accumulators, as it adopts groups of known order and has smaller parameters
size. Furthermore, the soundness of [KB21] is based on the same security
assumption of BBS signatures (i.e., the q-SDH assumption), and can be
implemented on the same curves.

Vitto and Biryukov, propose a universal Nguyen-based accumulator [VB22].
The accumulator has communication complexity O(|a|+|d|), as it is updated
both on additions and deletions. However, they provide a method for batch-
ing multiple updates with two polynomials, called update polynomials. The
evaluation of these polynomials on input an accumulated element yields
some coefficient that can be used to update the associated witness. How-
ever, the adaptive-soundness of their universal accumulator has been broken.
One of the two polynomials used to batch additions can be efficiently fac-
tored (as it is defined over a prime-field) yielding the list of added elements.
By knowing the list of additions, an attacker who follows the strategy pre-
sented in [JLM22, Section 3.1] can produce a valid membership witness for
a non-accumulated element.

In [JLM22], Jacques et al. instantiate the communication efficient con-
struction of Nguyen’s accumulator over type-3 pairings. To update wit-
nesses, the authors outsource the evaluation of the update polynomial tech-
nique introduced in [VB22] using Multi-Party Computation (MPC) tech-
niques, achieving O(

√
m) holder computation. However, for updates to be

anonymous, they assume that a fraction of the involved parties do not col-
lude, which requires a modification in our threat model. Furthermore, the
proposed MPC protocol would introduce considerable complexity in the sys-
tem. First of all, each holder would need to wait for the complete message

5To ensure adaptive soundness, the prover needs to also demonstrate possession of a
static BB signature on the element e.

21

exchange with the MPC servers, paying for all the additional communica-
tion time. Furthermore, to satisfy holders queries, trusted parities would
need to create expensive update polynomials and evaluate them on-the-fly.
If additional countermeasures are not applied, this could facilitate Denial
of Service (DoS) attacks with large amplification factors. For instance, an
attacker can flood some of the MPC parties with update queries. Note that
mitigating these kind of attacks is non-trivial: if each update query is anony-
mous, it is hard to identify the source of the attack. For all these reasons,
we believe that such an MPC solution is unlikely to scale up to millions of
users.

Our work In the following chapter, we build an accumulator starting from
the non adaptively sound communication-optimal construction of [KB21].
Then, we apply the Σ-protcols for BBS disclosure that were recently intro-
duced by Tessaro and Zhu [TZ23], to provide faster ZK membership proofs.
Using the update polynomials introduced in [VB22] to batch deletions, to-
gether with efficient polynomial evaluation techniques, we reduce the com-
putational cost for holder update by a logm factor, while proving that the
new accumulator construction preserves security. Then, we propose an ef-
ficient method for evaluating multiple batch/individual updates as a single
batch. Such method eliminates the need for computing batch polynomials
and, to the best of our knowledge, represents a novel contribution of this
thesis. Finally, we limit the maximum number of holder updates introducing
the concept of revocation epochs.

Note that in [KB21], Baldimtsi et al. propose an accumulator with
stronger security, however their construction requires binding accumulator
proofs to a long-term BB signature. For this reason we chose to adopt the
version with non-adaptive security. In Chapter 5, we explain how to achieve
adaptive soundness using the BBS signatures that are already provided to
every e-ID holder (i.e., without introducing any additional signature).

22

Chapter 4

Building a Dynamic
Accumulator with Efficient
Update

In this chapter, we present a positive dynamic non-adaptively sound accu-
mulator scheme that supports efficient updates. We start by introducing the
notation (Section 4.1), and giving a preliminary construction of the scheme
(Section 4.2). Then, we proceed addressing privacy (Section 4.3) issues of
the initial construction, adding support for ZK membership proofs. In the
final part of the chapter, we focus on improving the scheme’s scalability by
tackling the update problem (Sections 4.4 and 4.5).

In the following Chapter 5, we will explain how this scheme can be used
for revoking BBS credentials.

4.1 Notation

In Table 4.1 we describe the symbols that we will use throughout this thesis.
We will assume to have fixed a prime field Fq, and elliptic curves1 E,E′

with a non-degenerate bilinear pairing map:

ẽ : G1 ×G2 → Gt,

such that G1 ⊂ E(Fq), and G2 ⊂ E′(Fqk) for some integer k. The three
subgroups have same prime order p (i.e., p = |G1| = |G2| = |Gt|). A specific
pairing instance will be indicated by a tuple (p,G1,G2,Gt, ẽ, G1, G2), where
G1, G2, are generators of G1, and G2 respectively.

Note that each element of G1 can be expressed in log q bits, each element
of G2 in k log q bits, and each scalar in log p bits. Scalars and group elements
are respectively indicated by lower-case and upper-case letters.

1In our software implementation, we use the pairing-friendly BLS12-381 curve.

23

Symbol Description

← Assignment
→ Returned values
←$ Chosen uniformly at random
= Equality
⊥ Failure

ẽ Bilinear pairing map
q Base field modulus
p Order of the inner subgroups
0G Identity element of group G
log ⌈log2⌉ (i.e., number of bits)

Table 4.1: Symbols table

To simplify notation, we denote the witness associated with an element e
at time t as At instead of wite,t (as was done in our accumulator definition).

Finally, we use additive notation to express operations between group
elements.

4.2 Preliminary Construction of our Accumulator
Scheme

In this section, we first give a preliminary construction of our accumula-
tor scheme for revoking BBS signatures (Section 4.2.1). Then, we analyze
the performances of the accumulator through a theoretical analysis (Sec-
tion 4.2.2), and a software implementation (Section 4.2.3). Finally, we out-
line the shortcomings of the scheme (Section 4.2.4), that motivate the work
of the following sections.

4.2.1 Our Preliminary Accumulator Scheme

In Figure 4.1, we define our preliminary accumulator scheme, which serves as
the foundation for our final design. This accumulator is borrowed from the
communication-optimal, positive dynamic non-adaptively sound construc-
tion presented in [KB21, Section IV], and implemented over type-3 pairings.
Soundness is proven under the q-SDH assumption.

The advantage of [KB21] construction with respect to the original Nguyen’s
accumulator [Ngu05], is that the accumulator value remains constant when
new elements are added. When considering our e-ID setting, this translates
into requiring no holder update on issuance of new credentials.

Note that, since we only update on deletions, in Figure 4.1 we have
slightly modified our accumulator definition to include a single update func-
tion WitUpH instead of the pair WitUpAddH,WitUpDelH. Further-

24

GenI(1
λ)

1. choose (p,G1,G2,Gt, ẽ, G1, G2) with se-
curity λ;

2. x←$Fp;

3. X ← xG2;

4. V0←$G1;

5. S0 ← ∅;
6. pp← ((p,G1,G2,Gt, ẽ, G1, G2), X);

7. return (V0, x, pp, S0)

AddI(x, Vt, e, Sk)

1. if e ∈ Sk : return ⊥;

2. At ←
(

1
x+e

)
Vt;

3. Sk+1 ← Sk ∪ {e};
4. return (At, Sk+1)

DelI(x, Vt, e, Sk)

1. if e /∈ Sk : return ⊥
2. Vt+1 ←

(
1

x+e

)
Vt;

3. Sk+1 ← Sk \ {e};
4. upmsgt+1 ← (Vt+1, e);

5. return (Vt+1, upmsgt+1, Sk+1)

WitUpH(Vt, e, At, upmsgt+1)

1. (Vt+1, et)← upmsgt+1;

2. if e = et : return ⊥
3. At+1 ←

(
1

et−e

)
(At − Vt+1)

4. return At+1

VerifyWitV (Vt, e, At)

1. return ẽ(At, eG2 +X) = ẽ(Vt, G2)

Figure 4.1: An Initial Accumulator Construction

more, to simplify notation, we denote the witness associated to an element
e at time t as At instead of Ae,t (as done in Definition 2.2.1).

Initialization the issuer runs GenI to initialize the system. He chooses
the underlying type-3 bilinear pairing instance (p,G1,G2,Gt, ẽ, G1, G2) us-
ing the security parameter λ. Then, he randomly picks the initial accu-
mulator value V0, the accumulator’s secret key x, and derives the public
key X = xG2. Finally, the algorithm initializes the issuer’s state with the
(initially) empty accumulated set S0.

The public parameters pp are set as first implicit parameter in each of
the following algorithms.

Additions the issuer runs AddI to add an element e in the accumulated
set. Initially, the issuer ensures that e is not accumulated already. Then,
given the current accumulator Vt, he computes the witness At for the new
element e. Finally, he updates the state by including e in the accumulated
set. Note that, as the accumulator value is not modified, no update message
needs to be returned.

Deletions the issuer runs DelI to delete an element e from the accumu-
lator. Initially, the issuer ensures that e is currently in the accumulated set.
Then, he updates the accumulator value to incorporate the deletion of e.
Finally, he updates the issuer’s state by removing e from the accumulated
set, and creates the update upmsgt from the new accumulator value Vt+1,
and the deleted element et.

25

Update the holder runs WitUpH to update his witness after a revocation
event. He uses the new accumulator value Vt+1, and the deleted element e
contained in message upmsgt to compute an individual witness update.

Verification any party can run VerifyWitV to check whether the At is
a valid witness for the element e with respect to the input accumulator
Vt. Verification of the pairing equation on input the issuer’s public key X
implies that the witness is correctly formed.

4.2.2 Theoretical Analysis

In this section, we analyze the performances of the preliminary construction
defined in Figure 4.1. In Table 4.2 we measure the computational cost
in terms of group operations, while in Table 4.3 we count the number of
exchanged bits. The costs are relative to the entity executing the specified
primitive, and are always referred to single executions.

We let A,M, I, P respectively denote additions, multiplications, inver-
sions, and pairing operations.

GenI AddI/DelI WitUpH VerifyWitV

G2 G1 Fp G1 Fp G1 Fp

1M 1M 1A+ 1I 1A+ 1M 1A+ 1I 2P + 1M + 1A 1M + 1A

Table 4.2: Required group operations for computing the primitives in Fig-
ure 4.1

GenI AddI/DelI WitUpH VerifyWitV

2 log q + 2k log q log q + log p log q + log p log q + log p

Table 4.3: Communication cost (in bits) of the primitives in Figure 4.1

Initialization Line 3 of GenI requires one multiplication in G2. At the
end, the issuer needs to publish the new accumulator V0, which has size log q,
and the public parameters, comprising of 2 generators (G1, G2) ∈ G1 × G2

of size log q + k log q, and the public key X ∈ G2 of size k log q. Hence, the
total communication cost is of 2 log q + 2k log q.

Additions/Deletions Lines 2 of bothAddI , andDelI require 1M inG1,
and 1A+ 1I operations in Fp. The communication cost for both primitives
consist in sending a pair (At, e) ∈ G1×Fp, which has size (log q+log p) bits.

26

Witness Update Line 3 ofWitUpH requires 1A+1M in G1, and 1A+1I
operations in Fp. The communication cost consist in downloading the update
upmsg, which has size (log q + log p). We highlight that, updating after m
revocations requires m sequential applications of the WitUpH algorithm.
Hence, the total update cost would be of m(1A + 1M) operations in G1,
m(1A+ 1I) operations in Fp, and m(log q + log p) downloaded bits.

Verification Line 1 of VerifyWitV requires 2P , and 1M + 1A in G1.
Downloading the user’s witness/element pair costs (log p+ log q) bits.

Note that by rewriting the equation in Line 1 as ẽ(At, eG2 + X) −
ẽ(Vt, G2) = 0Gt , we can use efficient techniques for multi-pairings evaluation
(e.g., see [Sco19]), which require less than two individual pairing operations.

4.2.3 Software Implementation

We developed an open-source Rust implementation2 of our accumulator
scheme. In this section, we only report the performance relative to our pre-
liminary construction. All the experiments are executed as a single thread
on a 13-inch 2020 MacBook Pro, equipped with an Apple M1 chip, and 16
GB of RAM. The results are generated after 30 independent runs, and error
bars are 95% confidence intervals.

Our accumulator adopts the pairing-friendly BLS12-3813 elliptic curve
implementation contained in the blsful crate4. The BLS12-381 curve been
selected by the BBS standard 5, and provides around 128 bits of security.
The field modulus q is of size log q = 381 bits, while the subgroups of the
pairing instance have prime order p of size log p = 255 bits. We also have
G1 ⊂ E(Fq), and G2 ⊂ E′(Fq2).

GenI AddI DelI WitUpH VerifyWitV

224.2 µs 75.9 µs 75.9 µs 76.4 µs 863.12 µs
288B 80B 80B 80B 80B

Table 4.4: Average computational costs, and communication costs for the
primitives in Figure 4.1

Issuer Operations We observe that AddI , and DelI have the same run-
time, this is expected as they have the same complexity in terms of group
operations. The run-time of GenI is higher, as multiplications in G2 are
almost 3× more expensive than in G1 in our library.

2eid-revocation-rs
3draft-irtf-cfrg-pairing-friendly-curves-11
4blsful
5draft-irtf-cfrg-bbs-signatures

27

https://github.com/acolomboepfl/eid-revocation-rs
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-11
https://crates.io/crates/blsful
https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html#name-bls12-381-ciphersuites

Verification As expected, VerifyWitV is the most expensive function
since it involves computing pairing operations.

Single Witness Update The computational cost of WitUpH is domi-
nated by a single multiplication in G1, which makes the runtime comparable
with those of AddI , and DelI .

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of deletions

0
200
400
600
800

1000
1200
1400
1600

Ru
nt

im
e

(m
s)

Computation time

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of deletions

0
200
400
600
800

1000
1200
1400
1600

Up
da

te
 S

ize
 (k

B)

Bytes sent

Figure 4.2: WitUpH on an increasing number of deletions

Sequential Witness Update In Figure 4.2, we evaluate the performances
of updating a witness after an increasing number of deletion, using a sequen-
tial application of WitUpH. Consistently with our theoretical analysis, we
notice that both computational and communication complexity grow linearly
in the number of deletions.

4.2.4 Limitations of the Scheme

In this section, we highlight three significant limitations of applying our
initial accumulator scheme to the e-ID-setting described in Section 3.1:

L1. Proofs are linkable: in the current construction, the only way a
verifier can check for inclusion of an element in the accumulator is by

28

executing the VerifyWitV function, on input the prover’s element e,
and witness At.

In our e-ID setting, each holder will be associated with a static and
unique element e. To show non-revocation, the holder needs to prove
that e is accumulated in Vt. Using VerifyWitV is clearly not privacy-
preserving: a verifier can link subsequent presentations of the same
credential by simply comparing inputs to the verification function;

L2. Update Scalabity: before performing a membership proof, the prover
needs to ensure that his witness is up-to-date with the current accumu-
lator value (otherwise verification fails). As we noted in Section 4.2.2,
updating a witness requires an execution of WitUpH for each revoca-
tion that happened from the last update. This both implies comput-
ing a linear number of multiplications in G1, and downloading a linear
number of group elements in the number of revocations.

In Section 4.2.3, we observe that for m = 10 000 the update already
requires 800KB of communication, and around 1s of computation on
a high-end laptop. Assuming a 2% revocation rate and 10M creden-
tials, we would get this number of revocations in around 2 weeks of
inactivity. Considering that our holders devices (i.e., smartphones)
have limited resources, updating would likely be ≈ 4− 5× slower than
on my laptop. Hence, our e-ID holders would be highly penalized for
being offline (i.e., missing updates). Overall, the overhead of updating
witnesses poses a sever limitation on the scalability of our scheme, and
may prevent the adoption in a real-world e-ID setting.

L3. Witnesses not bound to BBS signatures: there is no binding
between the unique element e, and the BBS signature associated to
a specific holder. Anyone knowing a valid (At, e) pair for the current
accumulator Vt can proof non-revocation of his BBS signature. A non-
revoked holder could even sell his (At, e) pair to anyone who wants to
prove non-revocation. Note that the verification function VerifyWitV
already gives the verifier access to many valid (At, e) pairs.

In the following sections, we expand the scheme to address all the above
limitations. We start by introducing support for ZK membership proofs
(Section 4.3). Then, and we improve the scalability of the scheme by adding
support for batch operations (Section 4.4), and limiting the maximum num-
ber of required holder updates (Section 4.5). In the next chapter, we design
a Σ-protocol to ensure that the element e used in the membership proof is
also included in the BBS signature (Section 5.1).

29

4.3 Adding Unlikability via ZK Proofs of Mem-
bership

In this section, we extend the preliminary accumulator construction intro-
duced in Section 4.2, adding support for ZK proofs of membership (Sec-
tion 4.3.1). Then, we analyze the performances of the new primitives (Sec-
tion 4.3.3, and Section 4.3.4).

4.3.1 Unlikable Proofs of Memebrship

In Section 4.2.4, we highlighted the privacy implications of directly apply-
ing VerifyWitV for membership verification. In VerifyWitV , the verifier
checks membership by directly verifying the following pairing equation:

ẽ(At, eG2 +X) = ẽ(Vt, G2), (4.1)

which requires knowledge of the holder’s unique element e. Our goal, is
to define a Σ-protocol between holder and verifier that enforces validity of
eq. (4.1), without leaking any information about the holder.

To this end, we start by considering the Σ-protocol designed for BBS
verification that was recently proposed in [TZ23, Section 5.2]. In the spe-
cial case where the signed message is empty (i.e., m = ∅), the verification
equation on the BBS signature σ̂ = (Â, ê) looks as follows:

ẽ(Â, êG2 + X̂) = ẽ(C,G2), (4.2)

where C ∈ G1, x̂ ∈ Zp, and X̂ ← x̂G2 are the issuer’s secret and public

key respectively, ê ∈ Zp is a random element, and Â ←
(

1
x̂+ê

)
C. After

performing the following assignments:

C ← Vt, Â← At, ê← e, X̂ ← X,

we notice that eq. (4.2) is equivalent to eq. (4.1). Hence, we adopt
the Σ-protocol designed for BBS signatures to proof membership in our
accumulator scheme.

4.3.2 Adding ZK Proofs of Membership

In Figure 4.3, we introduce new primitives defining a Σ protocol for member-
ship proofs. Both primitives are borrowed from the full-disclosure protocol
in [TZ23], and assume that the public accumulator V is given by the is-
suer. The security of the Σ-protocol is proved in the original paper ([TZ23,
Section 5.2]).

30

MemProofH(Vt, e, At)

1. MemProof .CommH(Vt, e, At)
→ (Ā, B̄, U, α, β, r);

2. send (Ā, B̄, U) to verifier;

3. receive c from verifier;

4. MemProof .RespH(e, α, β, r, c)
→ (s, t);

5. send (s, t) to verifier.

MemVerV (Vt, X)

1. receive (Ā, B̄, U) from prover;

2. c←$Zp;

3. send c to prover;

4. receive (s, t) from prover;

5. b1 ← ẽ(Ā,X) = ẽ(B̄, G2);

6. b2 ← U + cB̄ = sVt + tĀ;

7. return b1 ∧ b2.

MemProof .CommH(Vt, e, At)
1. r←$Z∗

p

2. α, β←$Zp;

3. Ā← rAt;

4. B̄ ← r(Vt − eĀ);

5. U ← αVt + βĀ;

6. return (Ā, B̄, U, α, β, r).

MemProof .RespH(e, α, β, r, c)
1. s← α+ r · c;
2. t← β − e · c;
3. return (s, t).

Figure 4.3: Primitives adding support for ZKPs of membership

MemProofH MemVerV

G1 Fp G1 ×G2 G1

5M + 2A 2M + 2A 2P 3M + 2A

Table 4.5: Required operations for computing primitives in Figure 4.3

4.3.3 Theoretical Analysis

Prover Computing Line 3 of MemProof .CommH requires 1M in G1,
while computing Lines 4, 5 requires 2M+1A each. In total we have 5M+2A
operation in G1. Computing Lines 1, 2 of MemProof .RespH, requires
2M + 2A operations in Fp.

The prover sends 3 commitments in G1 (Line 2 of MemProofH), 2
responses in Fp (Line 5), and downloads one challenge in Fp (Line 3). In
total, the exchanged communication is of (3 log q + 3 log p) bits.

Verifier Verifying the first equation (Line 5 of MemVerV) requires 2P ,
while verifying the second equation requires 3M + 2A in G1 (Line 6). We
have a total of 2P , and 3M + 2A in G1.

The verifier sends 1 challenge in G1 (Line 3), and downloads three com-
mitments in G1 (Line 1), and two responses in Fp (Line 4). In total, the
communication cost is of (3 log q + 3 log p) bits (as expected since the com-
munication is symmetric).

31

MemProofH MemVerV

3 log q + 3 log p 3 log q + 3 log p

Table 4.6: Communication cost (bits) of primitives in Figure 4.3

4.3.4 Software Implementation

In Table 4.7, we can compare the average run-times, and communication
costs of the new primitives for membership verification, with respect to
linkable witness verification introduced in the previous section.

MemProofH MemVerV VerifyWitV

406.14 µs 971.50 µs 863.12 µs
240B 240B 80B

Table 4.7: Average computational costs, and communication costs of the
primitives for ZK verification defined in Figure 4.3, compared to their link-
able counterpart defined in Figure 4.1

The run-times of MemVerV and VerifyWitV are comparable, as both
functions require the same amount of pairing operations. Furthermore, even
though MemVerV requires 3 more multiplication in G1, the single multi-
plication in G2 required by VerifyWitV has higher individual cost.

The introduced overhead is mostly on the prover, who needs to run the
MemProofH algorithm instead of just presenting his witness-element pair.
However, MemProofH is the function with smallest run-time, as it does
not involve any pairing operation.

Comparison with Original Membership Proof In Table 4.8, we bench-
marked the performances of the original Σ-protocol for unlinkable proof ver-
ification introduced in [Ngu05].

Ngu.Proof Ngu.Ver

5.8152 ms 3.503 ms
720 B 720 B

Table 4.8: Average computational costs, and communication costs of the
original membership proof

The protocol was slightly improved in [JLM22], but still requires 4 pair-
ing operations and 2 additions in Gt on the holder side. As a result, we
observe that our [TZ23]-based disclosure protocol performs ≈ 10× better in
proof computation, and ≈ 4× better in proof verification. The code used to
compute the benchmarks was taken from hyperledger’s open-source imple-

32

mentation6, which also adopts the blsful crate as underlying BLS library.

4.4 Adding Support for Batch Operations

In this section, we improve the scalability of our scheme, by adding support
for batch updates. We start highlighting how the current update strat-
egy limits the scalability of our scheme (Section 4.4.1), and describe how
multiple deletions can be batched (Section 4.4.2). Then, we introduce tech-
niques to efficiently perform batch operations (Section 4.4.3), and design
an efficient way to aggregate multiple batch deletions into a single batch
(Section 4.4.4). Afterwards, we extend our accumulator scheme with new
primitives for batch operations (Section 4.4.5), and analyze the security of
our new construction (Section 4.4.6). We conclude this section evaluating
the performances (Sections 4.4.7 and 4.4.8) of our new primitives.

4.4.1 The update problem

The main client overhead of our preliminary scheme (Figure 4.1) comes from
keeping witnesses up-to-date. Let |a|, |d| respectively denote the number of
credentials added to/removed from the accumulator after a witness was last
updated. Updating a witness in our [KB21]-based scheme requires m = |d|
multiplications in G1 (as we only update on deletions). This improves the
original update protocol proposal by [Ngu05], which required m = |a|+ |d|
multiplications in G1. However, as noted in Section 4.2.4 (L2), the induced
client overhead remains unpractical for national e-ID settings. This problem
frequently arises when considering potential application of cryptographic
accumulators in anonymous credential systems, and it has limited a real-
world adoption of such solutions(e.g., [Dun22] shows scalability limitations
of Hyperledger Indy).

The update strategy of both [Ngu05; KB21], consists in sequentially
applying the single update algorithm m times. One may wonder whether
it is possible to design an algorithm for updating witnesses in batches that
runs in constant time. Unfortunately, for a positive dynamic accumulator,
the answer is negative: in [CH10] the authors proof that updating a witness
after m changes to the accumulator value requires Ω(m) operations. The
lower bound comes from reading the input only (the update message itself
has size Ω(m)).

Nonetheless, such lower bound still gives us room for improvement: the
main overhead of sequentially applying the single update algorithm is com-
puting m multiplications in G1. Our goal is to come up with a batch update
algorithm that, while being inevitably subjected to Ω(m) complexity, re-
duces the number of required multiplications in G1.

6See agora-allosaur-rs

33

https://github.com/hyperledger-labs/agora-allosaurus-rs/tree/main/src

4.4.2 Polynomials for Batch Updates

The authors of [VB22] designed a batch update protocol for a universal
dynamic variant of [Ngu05] accumulator. Among their contributions is the
ideation of update polynomials. Such polynomials are computed by the issuer
to batch multiple deletion events7, and distributed to all clients. Evaluating
the polynomials on some accumulated element e yields the update for the
associated witness.

Given a list of elements to deleteD = (e1, . . . , em), and the accumulator’s
secret key x, the authors define the following update polynomials:

d(X) =

m∏
i=1

(ei −X), (4.3)

v(X) =

m∑
s=1

 s∏
i=1

(ei + x)−1
s−1∏
j=1

(ej −X)

 . (4.4)

Calling Vt the initial accumulator, the accumulator’s value after a batch
deletion of all the elements in D can be computed as:

Vt+1 =
1∏m

i=1(ei + x)
Vt =

1

d(−x)
Vt. (4.5)

Furthermore, a holder can update his witness At by evaluating d(X) and
v(X) on input his element e as follows:

At+1 =
1

d(e)
(At − v(e)Vt). (4.6)

Equation (4.6) can be proven by induction. The proof is quite straightfor-
ward, and can be found in the original paper [VB22, Appendix D].

Updating witnesses using eq. (4.6) would be extremely efficient, as both
d(X), and v(X) are defined over Fp. However, the authors observe that
v(X) leaks information about the accumulator’s key x, hence it cannot be
published directly. Instead, the issuer publishes the polynomial Ω(X) ←
v(X)Vt. After re-writing v(X) =

∑m−1
i=0 ciX

i for some coefficients c0, . . . , cm−1 ∈
Fp, the polynomial Ω(X) is defined as follows:

Ω(X) = Vt

m−1∑
i=0

ciX
i. (4.7)

Then, by substituting Ω(e) in eq. (4.6), we get the equation for comput-
ing witness batch updates:

At+1 =
1

d(e)
(At − Ω(e)) (4.8)

7As we only update on deletions, we do not consider polynomials batching additions.

34

Note that the coefficients Ω = (c0Vt, . . . , cmVt) are now defined in G1,
where the Discrete Logarithm problem is assumed to be hard. In Sec-
tion 4.4.6, we proof that the update polynomials do not leak any more
information than the single update messages generated by a sequential ap-
plication of DelI .

4.4.3 On Efficient Polynomial Evaluation Techniques

In this section, we investigate efficient ways for evaluating the batch update
polynomials defined in the previous section.

Applying the batch update equation (4.8), requires evaluating polyno-
mials d(X) ∈ Fp[X], and Ω(X) ∈ G1[X], on input the holder’s element e.
As both polynomials have m coefficients, a direct evaluation of Ω(e) requires
m multiplications in G1.

In [VB22], users are both given a membership and a non-membership
witness. The result of the polynomial evaluation can be used to update
both witnesses and only requires m + 2 multiplications, instead of the 2m
multiplications required by sequentially updating both witnesses8.

However, our e-ID holders are provided with a membership witness only,
as it suffices for proving non-revocation. As we said, a sequential application
of the single update algorithm also requires m point multiplications. Hence,
the batch update strategy of [VB22] does not seem to after any advantage
compared to the trivial approach.

At this point, one may wonder if there are more efficient approaches for
evaluating the polynomial Ω(X). The underlying problem takes the name of
Multi Scalar Multiplication (MSM), and its importance has grown recently
due to its applications in zk-SNARKs (e.g., Zcash [Hop+16], and Turbo-
PLONK [Spo+20]).

The MSM problem can be defined as follows:

Def (MSM problem). Let G be a group of prime order p. Given a vec-
tor of scalars c⃗ = (c0, · · · , cn−1) ∈ Fn

p , and a vector of coefficients P⃗ =
(P0, . . . , Pn−1) ∈ Gn, evaluate the following sum:

S =

n−1∑
i=0

ci · Pi.

In our setting, P⃗ is the coefficient vector Ω⃗ ∈ Gm
1 of the polynomial

Ω(X), while each ci is the i-th power of the holder’s element e evaluated in
Fp.

The trivial algorithm adopted by [VB22] computes the result by defini-
tion: using the double-add algorithm, each scalar-point multiplication would

8Membership and non-membership witnesses have different update algorithms

35

1. res←
∑

Pi s.t. ci,j=b−1 Pi;

2. temp← res;

3. for k ∈ {b− 2, . . . , 2}:
1. temp← temp+

∑
Pi s.t. ci,j=k Pi;

2. res← res+ temp;

4. res← res+
∑

Pi s.t. ci,j=1 Pi;

Figure 4.4: Inner Sum Computation in Pippenger Approach

require 2 log p additions 9 in G1 (in the worst case). Hence, it has a total
complexity of 2m log p additions.

State-of-the-art approaches are optimized variants of Pippenger’s multi-
exponentiation algorithm, applied to MSM as in [Ber+12, Section 4]. The
general idea is to split the log p bits of each coefficient into h = log p/w
windows of size w. Defining b = 2w, each coefficient ci can be expressed
in base-b as ci =

∑h−1
j=0 ci,jb

j , where 0 ≤ ci,j < b. Using our new base-b
representation, we re-write S as:

S =
n−1∑
i=0

ci · Pi

=

n−1∑
i=0

h−1∑
j=0

ci,j · bj · Pi

=

h−1∑
j=0

bj
n−1∑
i=0

ci,j · Pi

=
h−1∑
j=0

bj

b−1∑
k=0

k
∑

Pi s.t. ci,j=k

Pi



The inner sum (within the parenthesis) can be computed as in Figure 4.4.
In the figure, computing Line 1, Line 3.1, and Line 4 require summing over
all Pi ∈ P⃗ , which costs n additions in G. Line 3.2 costs b−3 additions in G.
Altogether, the computation of all inner sums requires h(n+b−3) ≃ h(n+b)
additions in G.

9For simplicity, we do not consider the difference between point doubling and point

36

The outer sum can be computed by iterating in reverse order, with one
addition and w doubling per iteration (remember that b = 2w). This consists
in h(w + 1) additions in G.

Overall, the total complexity of evaluating S is of h(n+ b) + h(w+1) ≈
h(n+ b) additions in G.

In our setting, Pippenger’s approach with w ← logm (i.e., h = log p/ logm),
evaluates Ω(e) with roughly 2m log p/ logm additions in G1. Note that this
improves the naive solution by a logm factor. In Section 4.4.8, we show how
this reduction in complexity translate to actual performance improvements.

4.4.4 Aggregating Multiple Batches

In the previous section, we described an efficient method for computing the
update after a single batch deletion event. However, at the time a holder
updates, multiple batch deletion events may have occurred. In this section,
we design an efficient method for aggregating multiple batch deletions into
a single batch update.

Let us assume that n batch deletion happened since the client last
updated. The i-th batch deletion, is associated with a list of deleted el-
ements Di = (ei,1, . . . , ei,mi), and respective update polynomials ∆i :=
(Ωi(X), di(X)). The holder would then need to download the list up-
date polynomials ∆n

i := (∆i)
n
i=1, and sequentially apply the update as per

eq. (4.8).
However, due to the (logm)−1 factor in Pippenger’s complexity, the

efficiency of the update evaluation depends on the sizes of the single batch
deletions. For instance, sequentially updating after three batch deletions
of size m costs ≈ 6m log p

logm additions, while updating after a batch deletion

of size 3m costs ≈ 6m log p
log 3m additions. Note that, in the worst case were

each mi = 1 (i.e., the issuer only performs single updates), the update is
performed with the single update algorithm, which costs 6m log p additions.

In [VB22, Section 4.2], the authors propose a way to aggregate a list of
batch updates ∆j

i+1, into a single update ∆i→j := (Ωi→j(X), di→j(X)) such
that:

Ai+j =
1

di→j(e)
(Ai − Ωi→j(e)). (4.9)

By definition (4.3), it follows:

di→j(X) =

j∏
t=i+1

dt(X). (4.10)

additions.

37

Furthermore, the authors proof that:

Ωi→j(X) =

j∑
t=i+1

di→t−1(X) · Ωt(X), (4.11)

with di→i(X) := 1.
Correctness of eq. (4.11) is proven in [VB22, Appendix D.2]. Vitto et al.

compute Ωi→j(e) by directly evaluating eq. (4.11), which requires a linear
number of multiplications in G1.

Instead, we can achieve better performances as follows: for a list of
update polynomials (Ωt(X), dt(X))t∈{i+1,...,j}, let Ωt(e) =

∑mt
k=1 e

k−1Ωt,k.
Furthermore, let di→t−1(e) = at for t ∈ {i+ 1, . . . , j}.

We can rewrite eq. (4.11) as:

Ωi→j(e) =

j∑
t=i+1

di→t−1(e) Ωt(e)

=

j∑
t=i+1

at

mt∑
k=1

ek−1Ωt,k

=

j∑
t=i+1

mt∑
k=1

(at · ek−1) Ωt,k (4.12)

Computing all coefficients (at · ek−1), has total cost m =
∑j

t=i+1mt scalar
multiplications. Note that unlike the method in [VB22], eq. (4.12) does not
require any multiplication in G1.

At this point, evaluating Ωi→j(e) reduces to solving an instance of the
MSM problem with coefficients of length m. Hence, exactly as in Sec-
tion 4.4.3, we can use Pippenger’s approach to speed up the evaluation
of Ωi→j(e), with a cost of ≈ 2m log p/ logm multiplications in G1.

4.4.5 Adding Support for Batch Updates

In fig. 4.5, we define primitives for batch operations. As done in the previous
section, we let D = (e1, . . . , em) denote a list of elements that the issuer
wants to revoke, and ∆ the respective update polynomials. Furthermore,
we let ∆j

i+1 := (∆t)
j
t=i+1 denote the list of update polynomials that, after

being applied to a witness Ai, yield the updated witness Aj .

Creating Update Polynomials the issuer runs GenUpPolyI to create
the batch update polynomials from the deletion list Dt+1. He computes
the polynomials dt+1(X), Ωt+1(X) according to the equations introduced in
Section 4.4.2, and returns the update ∆t+1.

38

GenUpPolyI(x, Vt, Dt+1)

1. (e1, . . . , em)← Dt+1;

2. compute dt+1(X) as per eq. (4.3)

3. compute Ωt+1(X) as per eq. (4.7);

4. ∆t+1 ← (d(X),Ω(X));

5. return ∆t+1;

DelBatchI(x, Vt, Dt+1, Sk)

1. if Dt+1 ̸⊆ Sk : return ⊥;
2. GenUpPolyI(x, Vt, Dt+1)→ ∆t+1;

3. (dt+1(X),Ωt+1(X))← ∆t+1

4. Vt+1 ← 1
dt+1(−x)

Vt

5. Sk+1 ← Sk \D;

6. return (Vt+1,∆t+1, Sk+1)

AggUpPolyH(e,∆t+n
t+1)

1. {di(X), Ωi(X)}t+n
i=t+1 ← ∆t+n

t+1 ;

2. (Ωi,1, . . . ,Ωi,mi)← Ω⃗i;

3. if ∃ di(X) s.t. di(e) = 0 : return ⊥;
4. at+1 ← 1;

5. for i ∈ {t+ 2, . . . , t+ n}:
6. ai ← ai−1 · di−1(e);

7. for i ∈ {t+1, . . . , t+n}, k ∈ {1, . . . ,mi}:
8. ci,k ← ai · ek−1

9. Ωt→t+n(e)←
∑t+n

i=t+1

∑mi
k=1 ci,kΩi,k;

10. dt→t+n(e)← at+n · dt+1(e);

11. return (dt→t+n(e),Ωt→t+n(e))

WitUpBatchH(Vt, e, At,∆
t+n
t+1)

1. AggUpPolyH(e,∆t+n
t+1) → (dt→t+n(e),

Ωt→t+n(e));

2. At+n ← 1
dt→t+n(e)

(At − Ωt→t+n(e));

3. return At+n

Figure 4.5: Primitives for batch update operations

Batch Deletions the issuer runs DelBatchI to perform a batch deletion
of all elements in the deletion list Dt+1. First the issuer checks that all the
element to delete are in the accumulated set, and aborts otherwise. Then, he
generates the polynomials for Dt+1 using GenUpPolyI . Finally, he derives
the new accumulator value Vt+1 (eq. (4.5)), and updates the issuer’s state.

Aggregating updates the holder runs AggUpPolyH to compute the
aggregated evaluation of a list of batch deletion events. First, the holder
checks that he has not been revoked (i.e., ̸ ∃ di s.t. di(e) = 0), and fails
otherwise. Then, he computes the evaluation of the aggregated update poly-
nomials Ωt→t+n(e) (Lines 4-9) as by eq. (4.10), and dt→t+n(e) (Line 10) as
by eq. (4.11).

Witness update the holder runs WitUpBatchH to update his witness
after a sequence of batch deletion events. First, the holder callsAggUpPolyH
to get the aggregated evaluations Ωt→t+n(e), dt→t+n(e). Then, he applies the
update as per eq. (4.9).

4.4.6 Soundness of the Extended Construction

In the previous section, we expanded our non-adaptively sound accumulator,
introducing support for batch updates. In this section, we show that batch

39

update polynomials do not leak any additional information compared to the
single update messages generated by a sequential execution of the deletion
algorithm.

Consider an initial accumulator value V0, and pair of update polynomials
(Ω(X), d(X)) defined as in Section 4.4, and batching deletions of all elements
in D = (e1, . . . , em). For i ∈ [m], each sequential execution of DelI on input
ei, returns the update message upmsgi = (ei, Vi), where Vi =

1
x+ei

Vi−1 is
the new accumulator value.

Clearly, anyone having access to {upmsgi}i∈[m] can compute:

d(X) =
m∏
i=1

(ei −X).

Let us now consider the polynomial Ω(X). By rewriting eq. (4.7), we have:

Ω(X) = V0

m∑
s=1

s∏
i=1

(ei + x)−1
s−1∏
i=1

(ei −X)

=
m∑
s=1

V0

s∏
i=1

(ei + x)−1
s−1∏
i=1

(ei −X)

=

m∑
s=1

Vs

s−1∏
i=1

(ei −X).

The update messages contain each accumulator value Vs for s ∈ [m]. There-
fore, anyone having access to {upmsgi}i∈[m] can compute Ω(X) in polyno-
mial time. As both update polynomials do not leak any additional informa-
tion, our new construction preserves the non-adaptive soundness property
of the initial construction.

4.4.7 Theoretical Analysis Evaluation

In this Tables 4.9 and 4.10, we analyze the performances of the new primi-
tives defined in the previous section. We only indicate the costs forWitUpBatchH,
and DelBatchI , as they are mainly determined by the underlying calls to
AggUpPolyH, and GenUpPolyI respectively.

When evaluating WitUpBatchH, we let n denote the number of batch
updates aggregated by the holder, mmax the maximum number of elements
deleted in a single batch update (i.e., mmax = maxi∈[1..n] mi), and m the
total number of deleted elements (i.e., m = m1 + ... + mn). As in the
previous sections, Table 4.9 measures the computational cost in terms of
group operations, while Table 4.10 counts the number of exchanged bits.

Batch Deletion Line 3 of DelBatchI requires computing the update
polynomials. Computing v(X) according to eq. (4.4) requires ≈ m2 mul-
tiplications. Computing Ω(x) requires multiplying each coefficient of v(x)

40

WitUpBatchH DelBatchI

G1 Fp G1 Fp

2m log p
logmA 3mM mM m2M

Table 4.9: Required operations for computing primitives in Figure 4.5

WitUpBatchH DelBatchI

m(log q + log p) m(log q + log p)

Table 4.10: Communication cost (bits) of primitives in Figure 4.5

by the accumulator Vt. As v(x) has degree m − 1, this can be done in m
multiplications in G1 (even less using window techniques). The polynomial
d(X) can be computed from v(X) by maintaining an intermediate result,
with only 2(m− 1) additional multiplications.

The communication cost of distributing the update remains the same of
the non-batched approach, as Ω⃗ ∈ Gm

1 , and d⃗ ∈ Fm
p .

Batch Witness Update Line 5 of AggUpPolyH requires m−m1 mul-
tiplications in Fp to evaluate each di(e), and other n− 1 multiplications to
compute each ai. Line 8 requires mmax multiplications in Fp to precompute
each ek−1, and other m multiplications in Fp to compute each coefficient

ci,k. Line 9 requires ≈ (2m log p
logm) additions in G1 to compute the MSM with

Pippenger’s approach, while line 10 requires other m1+1 multiplications in
Fp. At the end, we have a total complexity of around 3m multiplications10

in Fp, and 2m log p
logm additions in G1.

Line 2 of WitUpBatchH only adds 1 inversion in Fp, and 1 addition
and 1 multiplication in G1 to the overhead of calling AggUpPolyH. Hence,
we can consider the computational cost of WitUpBatchH to be the same
as the one of AggUpPolyH.

4.4.8 Software Implementation

In this section, we evaluate the performances of the two primitives described
in Figure 4.5.

Batch Deletion In table 4.11, we observe that, for small values of m,
the cost of DelBatchI is comparable to a sequential application of DelI .
However, the performance rapidly degrade due to the quadratic complexity
of creating update polynomials. For m = 214, batch deletion becomes ≈
6.5× slower than sequential deletion.

10Note that as each mi ≥ 1, we have (n − 1) +mmax ≤ m. Therefore 2m + (n − 1) +
mmax ≤ 3m.

41

Batch Operations Sequential Operations

m DelBatchI WitUpBatchH DelI WitUpH
1 0.207 ms 0.076 ms 0.076 ms 0.076 ms
22 0.586 ms 0.302 ms 0.306 ms 0.308 ms
24 2.137 ms 1.233 ms 1.235 ms 1.2147 ms
26 6.690 ms 4.855 ms 4.977 ms 5.061 ms
28 26.920 ms 12.685 ms 19.885 ms 19.871 ms
210 123.98 ms 34.094 ms 78.493 ms 80.218 ms
212 787.76 ms 111.13 ms 314.84 ms 321.31 ms
214 8325.2 ms 355.80 ms 1262.7 ms 1279.5 ms

Table 4.11: Average computational costs for the primitives in Figure 4.1

m Uploaded/Downloaded Bytes

1 0.08 KB
22 0.32 KB
24 1.28 KB
26 5.12 KB
28 20.48 KB
210 81.92 KB
212 327.68 KB
214 1310.72 KB

Table 4.12: Communication cost for increasing m values. The costs are
equal for all primitives in Table 4.11

The issuer is assumed to have high computational power and does not
need to immediately publish the update, so the he overhead added by poly-
nomial computation could be considered acceptable. However, thanks to the
efficient method for aggregated evaluation we designed in Section 4.4.4, the
issuer can completely avoid computing update polynomials and release in-
dividual updates only. For example, instead of computing one polynomial of
degree 214 in 8.3s, the issuer could compute 214 individual updates in around
2.8s. Then, each holder can efficiently aggregate the 214 updates in a single
update polynomial, and evaluate the result with Pippenger’s approach. In
Figure 4.7, we show that aggregating single deletions and evaluating the
resulting polynomial does not introduce any significant overhead compared
to directly evaluating a single polynomial representing the entire batch.

Batch Updates In Table 4.9, we see that for large enough m values (e.g.,
m > 64), WitUpBatchH sensibly improves the run-time of WitUpH. In
Figure 4.5, we compared the two algorithms up to m = 20 000. As expected,
when the batch size increases, WitUpBatchH becomes increasingly more

42

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of deletions

0

200

400

600

800

1000

1200

1400

1600

Ru
nt

im
e

(s
)

Holder Sequential Update
Holder Batch Update

Figure 4.6: WitUpBatchH vs WitUpH on an increasing number of dele-
tions

efficient than WitUpH. For instance, when m = 5000 updating via sequen-
tial application of WitUpH requires around 0.383, while WitUpBatchH
takes 0.125s, yielding a 3× improvement. Instead, when m = 20 000, updat-
ing via WitUpH requires around 1.58s, while WitUpBatchH only takes
0.4s, improving by 4×.

Aggregating Multiple Batches In Figure 4.7, we can appreciate the
advantages of aggregating multiple update polynomials. In the experiment,
we fix a total of 5000 deletions, which we split into multiple batches, all of
equal size11. As expected, by varying the size of the individual batches (i.e.,
each mi), we observe differences in the performances of the batch update
algorithm. When the batch sizes are very small (e.g., mi = 1), the run-time
of the batch update algorithm without aggregation is close to the single up-
date algorithm. As the batch sizes become larger, the performances become
similar to those in Figure 4.6. On the opposite, the cost of the batch update
algorithm with aggregation remains constant, independently on the size of
the individual batches.

11Except for the last batch which could be smaller than the others

43

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Batch size

150

200

250

300

350

400

Ru
nt

im
e

(s
)

Sequential Update
Batch Update without Aggregation
Batch Update with aggregation

Figure 4.7: Comparing performances of WitUpBatchH with/without ag-
gregation onm = 5000 deletions split in sub-batches of equal sizemi, varying
from mi = 1 to mi = 5000.

Final remarks Figure 4.7 shows that, for m = 5000 total deletions, com-
puting an aggregated evaluation of the individual deletions does not intro-
duce any considerable overhead compared to evaluating all deletions as a
single batch. As we anticipated in the Batch Deletion paragraph, this
cancels the need of computing update polynomials.

Since computing the coefficients for the aggregated evaluation introduces
an overhead of m scalar multiplications, one could think that for larger
update sizes the performances would be sensibly affected. However, in the
blsful implementation, one multiplications in Fp only takes around 18 ns.
Therefore, for reasonable batch sizes, the overhead of the additionalm scalar
multiplications can be considered negligible.

Finally, we note that there optimized versions of Pippenger’s approach,
and some of them could further reduce the cost of polynomial evaluation.
For instance, rewriting the polynomial in Non-Adjacent Form (NAF) would
restrict each coefficient to the range [−b/2, b/2], where b is the based used in
the MSM. Exploiting the fact that (−b/2)P = (b/2)(−P) for every P ∈ G1,
we could reduce the complexity of the evaluation from 2m log p

log q to 3
2m

log p
log q

44

additions in G1
12. A more in-depth study on efficient polynomial evaluation

techniques is left as interesting future work.

4.5 Improving Update Scalability with Revocation
Epochs

In this section, we further improve the scalability of our scheme by intro-
ducing the concept of revocation epochs. We start by noticing that witness
updates still require high communication costs (Section 4.5.1), and we pro-
pose a method for limiting such costs (Section 4.5.2). Then, we modify our
scheme to support the new proposal (Section 4.5.3), and theoretically ana-
lyze the performances (Section 4.4.7). Finally, we simulate a realistic e-ID
scenario to show the practical advantages of our proposal (Section 4.5.5), and
conclude this chapter by exposing the remaining limitations (Section 4.5.6).

4.5.1 On the Communication Overhead of Witness Updates

In Section 4.4, we reduced the computational cost of updating witnesses by
supporting batch operations. However, we noted that batching does not
decrease communication costs: after m revocations, the update still involves
downloadingm(log p+log q) bits. The update size remains the same whether
we download the batch update polynomials generated by the batch deletion
algorithm or the m update messages produced by the single-update algo-
rithm. As shown in Table 4.12, for large m values, this requires holders to
download several hundreds of kilobytes. Unfortunately, the communication
lower-bound in [CH10] indicates that our scheme is already communication-
optimal.

A remaining way for reducing the communication complexity would be
by reducing the number of revocations. Obviously, we cannot set an upper
bound on the maximum revocation rate, as it would make our scheme im-
practical. Nonetheless, we can set a limit on the number of revocations for
which a user needs to compute his update. A trivial solution would be setting
a threshold on the maximum update size: when the threshold is reached,
the holder directly asks for his specific up-to-date witness. However, as the
holder asks for his own witness, this solution is not privacy-preserving13.

4.5.2 Limiting Maximum Updates with Revocation Epochs

The issue with the previous approach is that a holder only updates when
his witness is not fresh enough to be accepted by a verifier. This implies
that holder updates are tied to subsequent credential presentations: linking

12see e.g., https://hackmd.io/jNXoVmBaSSmE1Z9zgvRW_w for details
13If the user asks for more witnesses, either he achieves a constant-sized anonymity

45

https://hackmd.io/jNXoVmBaSSmE1Z9zgvRW_w

WitUpAllI(x, Sk)
1. V0←$G1;

2. W ← ∅;
3. foreach e ∈ Sk:

4. A0 = 1
x+e

V0;

5. W ←W ∪ (e,A0);

6. return (V0,W)

Figure 4.8: Primitive for updating all witnesses

a holder to a specific update event exposes sensitive timing information.
To break the timing relation, we propose to introduce fixed time intervals

in which everyone fetches his updated witness. We call this fixed intervals
revocation epochs14. At the end of each epoch, new witnesses can be dis-
tributed as software updates, similarly as in CRLite [Lar+17]. Note that in
our case, the update size is constant (e.g., 48 bytes for BLS12-381).

After adding revocation epochs, we can always assume that (in the worst
case) the holder’s witness was last updated at the beginning of the current
epoch. A holder would then need to update only for the number of revoca-
tion that happened within the current epoch. Consequently, by bounding
the time length of each epoch, we indirectly bound the update size.

4.5.3 Adding Revocation Epochs

In this Figure 4.8, we define the primitive WitUpAllI , which is used by
the issuer at the end of each epoch. In Line 1, the Issuer initializes an
accumulator V0 for the new epoch, invalidating all existing witnesses. In Line
3, he derives witnesses for each non-revoked user in the system, using the
accumulator’s private key. Note that no single update message is returned,
as every holder will fetch his specific update.

At the end of each epoch the Issuer can also rotate the accumulator
secret key: instead of feeding WitUpAllI with the old secret key x, the
issuer can use a new secret key x′. This automatically distributes to every
user an up-to-date witness that is valid under the new accumulator’s public
key X ′ ← x′G2.

4.5.4 Theoretical Analysis

In Table 4.13, we analyze the computational performances of WitUpAllI .
We let nh indicate the number of non-revoked holders in the system (i.e.,
nh = |S|). Line 4 can be done in roughly nh log p additions inG1 (i.e., around

set, or he downloads a non-constant number of witnesses. Hence, having large-enough
anonymity sets would introduce huge communication costs (e.g., 80 MB for a set size of
1M).

14Note that revocation epochs (or update epochs) have already been described by other

46

nh/2 multiplications), and nh additions and inversions in Fp. Note that
this a 2× improvement compared to the naive algorithm that requires nh

multiplications in G1 (i.e., 2nh log p additions). In the following paragraph
we briefly explain how we get such improvement.

WitUpAllI

G1 Fp

nh log p A nh(1I + 1A)

Table 4.13: Required operations for WitUpAllI

Speeding up witness generation with window methods The al-
gorithm WitUpAllI requires computing the list a1V0, . . . , anh

V0, where
ai = 1

ei+x for each ei ∈ Sk. Each multiplication with the double-add al-
gorithm requires 2 log p additions in G1, hence the naive algorithm has a
total complexity of 2nh log p additions in G1. Instead, for some c ̸= 0 and
b = 2c, we can rewrite each coefficient in base-b as:

ai =

⌈log p/c⌉∑
j=0

biai,j ,

where each ai,j < b. Then, each multiplication can be re-written as:

aiV =

⌈log p/c⌉∑
j=0

biai,jV,

The issuer can pre-compute each ai,jV at the cost of b additions in G1.
Using the pre-computed coefficients, calculating each single witness aiV only
requires (c+1) log p/c additions. Hence, computing the all list costs b+nh(c+
1)⌈log p/c⌉ ≃ b + nh log p additions in G1. By setting c = log nh, we get a
total of nh(log p+ 1), which is roughly nh log p additions in G1.

4.5.5 Practical Advantages of Revocation Epochs

In Figure 4.9, we illustrate the practical impact of introducing revocation
epochs in a simulation of our e-ID setting.

Assuming to have weekly revocation epochs, we compute the estimated
number of updates that a holder would need to compute after an increas-
ing number of days of inactivity. To estimate the number of revocation
occurring within a given time period we assume to have 10M users, and a
2% revocation rate, uniformly distributed over the year. Clearly, in a real

47

world scenario, the revocation rate would not have such uniform distribu-
tion. However, note that a 2% rate is likely to be much higher than what we
would experience in the real world. As a comparison, the revocation rate in
the PKI says well below 1%15, according to the measurements in [KC21].

0 7 14 21 28 35 42 49 56 63 70 77 84 91
Offline time (days)

0

4

8

12

16

20

24

28

32

36

40

44

48

Es
tim

at
ed

 u
pd

at
es

 (t
ho

us
an

ds
)

Without epochs
With epochs

Figure 4.9: Number of estimated holder updates after an increasing number
of offline days, comparing approaches with vs without revocation epochs.

We notice that after only a month of inactivity, a user would need to
catch up with around 16.5K revocations. In BLS12-381, this would require
downloading around 1.3MB, and ≈ 0.36s of computation on a high-end
laptop (according to the benchmarks in Table 4.11). On the other hand,
when using epochs the user only needs to catch up with the number of
weekly revocations, which are at most 4K independently on when he last
presented his credential. Using the same benchmarks as before, this would
only require downloading around 320KB of data and≈ 0.11s of computation.

Finally, we note that our choice of having weekly revocation epochs was
based on the number of users, and on the revocation rate that we were con-
sidering for the simulation. After deploying the system and gathering data,
the length of the epochs should be adjusted, also considering the maximum
client overhead we deem acceptable. For instance, in the Swiss e-ID setting

papers. However, to the best of our knowledge, they were never used for periodically
distributing up-to-date witnesses.

15Except during massive revocation events.

48

we would likely have less users and a smaller revocation rate, hence it could
be possible to have longer epochs (e.g., one month).

4.5.6 Remaining Limitations

In the previous sections, we highlighted the advantages of introducing re-
vocation epochs in our accumulator construction. However, there are also
some shortcomings:

• Flexibility: setting revocation epochs means that every user need
to fetch his updated witness at fixed time intervals, even if he will
never present his credential during the entire epoch. If epochs are too
short, this could generate an excessive communication overhead on
the system. Furthermore, the update should be done regularly (e.g.,
in the background). If a holder asks for his up-to-date witness just
before presentation, he become linkable, and the advantage of using
epochs is lost.

• Communication Costs: even though revocation epochs can con-
siderably reduce communication costs, high revocation rates or long
epochs might still necessitate downloading hundreds of kilobytes, as in
the case of our simulation. Although this overhead might be considered
manageable with today’s internet, it represent a significant increase in
communication compared to the 48 bytes required to download a single
witness.

In Chapter 6, we will explore alternative techniques for updating wit-
nesses based on PIR. These methods have the potential to provide anony-
mous updates with constant computational and communication overhead,
though they require a slight adjustment to the threat model.

49

Chapter 5

Credential Scheme with
Privacy-Preserving
Revocation

In this chapter, we propose a BBS credential scheme compatible with the
Swiss e-ID setting that supports scalable privacy-preserving revocation with
cryptographic accumulators. We open the chapter, by describing a protocol
to bind membership proofs for the accumulator defined in Chapter 4 with
BBS disclosure proofs (Section 5.1). Then, we make use of the binding pro-
tocol to present a BBS credential scheme with efficient accumulator-based
revocation (Section 5.2). Finally, we analyze the security of the protocol
that we introduced at the beginning of the chapter (Section 5.3).

5.1 A Protocol for Binding Membership Proofs
and BBS Proofs

In this section, we present a protocol for binding membership proofs of the
positive dynamic accumulator defined in Section 4.3 to BBS presentation
proofs. We begin with a brief introduction to the setting (Section 5.1.1),
followed by the description of the protocol (Section 5.1.2). The security
analysis of the protocol is deferred to the end of the chapter (Section 5.3).

5.1.1 Setting

We consider the e-ID setting defined in Section 3.1 (Scenario B). The issuer’s
public parameters are composed of the accumulator parameters defined in
our initial accumulator construction (Section 4.2), and some additional pa-
rameters for BBS verification.

The issuer generates the BBS parameters as follows:

50

- picks the BBS secret key x̂←$Zp;

- publishes the public key X̂ = x̂G2 ∈ G2, together with a list of gener-
ators (H1, . . . ,Hl) ∈ Gl

1;

On issuance, a credential holder receives a BBS signature and a mem-
bership witness from the issuer:

- the signature certifies that the holder is associated to list of attributes
m ← (m1, . . . ,ml) ∈ Zl

p. A BBS signature is a pair σ̂ = (Â, ê) ∈
G1 × Zp, where Â = 1

x̂+êC(m), and C(m) = G1
∏l

i=1m[i]Hi;

- the membership witness certifies that the holder’s signature has not
been revoked. We remind that a witness pair is defined as (A, e) ∈
G1 × Zp, where A = 1

(x+e)V, and V is the public accumulator value.
The unique element e associated to a holder is randomly picked from
the accumulator domain (i.e., e←$Fp \ {−x}).

Finally, we assume that the issuer sets the k-th attribute in the BBS
signature to the e element of the holder’s witness, i.e., m[k] = e.

Goal The holder can demonstrate validity of his BBS signature with re-
spect to a partially disclosed message m′ ⊂m by proving:

ẽ(Â, X̂) = ẽ(CJ(m) + (
∑
i∈I

m[i]Hi)− êÂ, G2)

where I ⊆ [l] is the set of indexes of non-disclosed attributes, J = [l] \ I,
and CJ(m) = G1

∑
i∈J m[i]Hi.

1

As we showed in Section 4.3, a holder can show non-revocation of his
witness against the public accumulator by proving:

ẽ(A,X) = ẽ(V − eA,G2).

However, in addition to prove the individual validity of the two sig-
natures, the holder should also prove that the element e contained in k-th
position of m is the same element used to produce the non-revocation proof.
If the latter check is not enforced, a holder can use any valid witness to prove
non-revocation of his credential, as we highlighted in Section 4.2.4 (L3).

5.1.2 Protocol Description

Wemove now to the description of the protocol. The algorithmsMemProof .CommH,
and MemProof .RespH, are defined as in Figure 4.3.

• Proof initialization:

1Note that CJ(m) + (
∑

i∈I m[i]Hi) = C(m)

51

– the prover starts initializing the proof by computing the commit-
ments for the membership proof:

MemProof .CommH(V,A, e)→ (r, α, β, Ā, B̄, U);

– then, the prover computes the commitments for the BBS proof:
he picks random r1, r2←$Z∗p, α′, β′, γ←$Zp, and δi←$Zp for every
i ∈ I. Then, he computes:

Ā′ ← r1r2
−1Â, D ← r2

−1C(m), B̄′ ← r1D − êÂ,

and

U1 = α′D + β′Ā′, U2 ← γD +
∑
i∈I

δiHi.

– finally, the prover sends (Ā, Ā′, B̄, B̄′, U, U1, U2, D) to the verifier;

• Challenge: the verifier picks a random challenge c←$Zp and sends it
back to the prover;

• Response: The prover computes responses for the memebership proof:

MemProof .RespH(e, r, α, β, c)→ (s, t),

and for the BBS proof:

s′ ← α′ + r1 · c, t′ ← β′ − ê · c,
z ← γ + r2 · c, ui ← δi −m[i] · c ∀i ∈ I.

Then, he sends (s, s′, t, t′, z, (ui)i∈I) back to the verifier;

• Verification: the verifier only accepts if the BBS proof is verified:

ẽ(Ā′, X̂) = ẽ(B̄′, G2) (1.1)

U1 + cB̄′ = s′D + t′Ā′ (1.2)

U2 + cCJ(m) = zD +
∑
i∈I

uiHi, (1.3)

the membership proof is verified:

ẽ(Ā,X) = ẽ(B̄,G2), (2.1)

U + cB̄ = sV + tĀ, (2.2)

and the blinded forms of e, and m[k] have the same value:

t = uk (3.1)

52

The above Σ-protocol is almost an AND composition of the Σ protcol
for BBS presentations defined in [TZ23, Appendix B] (which is adopted in
the BBS standard draft 2), and the one for membership proofs defined in
Section 4.3. However, as the prover uses the same randomness for computing
t, and uk, and we claim that (3.1) ensures m[k] = e, we need to prove that
our protocol is secure. At the end of this chapter (Section 5.3), we prove
that it is both sound and ZK.

5.2 Digital Credential Scheme with Accumulator-
Based Revocation

In this section, we present our complete construction of a BBS credential
scheme with accumulator-based revocation, which is well-suited to the Swiss
e-ID setting. We start by presenting the full construction of our scheme
(Section 5.2.1). Then, we make some remarks on adaptive soundness (Sec-
tion 5.2.2), and we prove that our scheme defines a positive dynamic adap-
tively sound accumulator (Section 5.2.3). We conclude the section with some
considerations on unlinkability (Section 5.2.4).

5.2.1 A BBS Credential Scheme with Accumulator Based
Revocation

In Figure 5.1, we outline our BBS scheme with accumulator-based revoca-
tion. To keep the scheme concise, we avoided re-defining the accumulator’s
primitives, which were detailed in Chapter 4. Furthermore, to avoid addi-
tional notation overhead, we assume that the issuer keeps an offline mapping
between each signed message m, and the respective random element e that
is stored in k-th position.

Issuance On issuance of a new BBS credential, the issuer has a message
m, which is the list of attributes describing the holder. We assume that the
k-th position of m is empty.

First, the issuer picks a random element e and sets it in k-th position
of m (Lines 1,2). Then, the issuer generates a BBS signature on m (Lines
3,4). Finally, the issuer runs AddI which issues a membership witness for
e, and includes the element in the accumulated set (Line 5).

Revoke To revoke a list of BBS credentials associated to messages D̂t+1 ←
(m1, . . . ,mm), the issuer creates a deletion list Dt+1 containing the as-
sociated elements (e1, . . . , em) (Line 2). Then, he executes DelBatchI
to remove Dt+1 from the accumulator, and publishes the resulting update
polynomials ∆t+1, and new accumulator value Vt+1 on a public repository.

2
https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html

53

https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html

GenI(1
λ)

1. SetupI(1
λ)→ (V0, x, pp′, S0);

2. x̂← Fp;

3. X̂ ← x̂G2;

4. (H1, . . . ,Hl)←$Gl
1

5. pp← (pp′, X̂,H1, . . . ,Hl);

6. publish pp;

7. return (x̂, x, V0, S0).

IssueI(x, x̂, Vt,m)

1. e←$Fp;

2. m[k]← e;

3. C(m)← G1
∏l

i=1 m[i]Hi;

4. Â← 1
x̂+ê

C(m);

5. AddI(x, Vt, e, Sk)→ (At, Sk+1);

6. σt ← (At, e);

7. σ̂ ← (Â, ê);

8. return (σt, σ̂, Sk+1).

RevokeI(x, Vt, D̂t+1)

1. (m1, . . . ,mm)← D̂t+1;

2. Dt+1 ← (mi[k])i∈[m]

3. DelBatchI(x, Vt, Dt+1, Sk)→ ret;

4. (Vt+1,∆t+1, Sk+1)← ret;

5. publish ∆t+1, Vt+1;

6. return Sk+1.

UpdateH(Vt, σt,∆
t+n
t+1)

1. (At, e)← σt;

2. WitUpBatchH(Vt, e, At,∆
t+n
t+1)→ At+n

3. σt+n ← (At+n, e);

4. return σt+n.

Proof .FinalH(e, ê, c, open,m, I)

1. (r, r1, r2, α, α′, β, β′, (σi)i∈I)← open;

2. MemProof .RespH(e, r, α, β, c)→ (s, t)

3. s′ ← α′ + r1 · c;
4. t′ ← β′ − ê · c;
5. z ← γ + r2 · c;
6. for i ∈ I:

7. ui ← δi −m[i]c;

8. resp← (s, s′, t, t′, z, (ui)i∈I);

9. return resp.

ProofH(Vt, σt, σ̂,m, I)

1. (At, e)← σt;

2. Proof .InitH(Vt, σt, σ̂,m, I)→ ret;

3. (commits, open)← ret;

4. send commits to verifier;

5. receive c from verifier;

6. Proof .FinalH(e, ê, c, open,m, I)→ resp

7. send resp to verifier;

VerifyV (Vt,m′)

1. receive commits from holder;

2. c←$Zp;

3. send c to prover;

4. receive resp from prover;

5. commits← (Ā, Ā′, B̄, B̄′, U, U1, U2, D);

6. resp← (s, s′, t, t′, z, (ui)i∈I)

7. b1 ← ẽ(Ā,X) =
?
ẽ(B̄, G2);

8. b2 ← U + cB̄ =
?
sC + tĀ;

9. b3 ← ẽ(Ā′, X̂) =
?
ẽ(B̄′, G2);

10. b4 ← U1 + cB̄′ =
?
s′D + t′Ā′;

11. b5 ← U2 + c CJ (m) =
?
zD +

∑
i∈I uiHi;

12. b6 ← t =
?
uk

13. b← ∧i∈[6]bi

14. return b;

Proof .InitH(Vt, σt, σ̂,m, I)

1. (At, e)← σt;

2. (Â, ê)← σ̂;

3. MemProof .CommH(Vt, At, e)→ ret;

4. (r, α, β, Ā, B̄, U)← ret;

5. r1, r2←$Z∗
p;

6. α′, β′, γ←$Zp;

7. for i ∈ I:

8. δi←$Zp;

9. Ā′ ← r1r2−1Â;

10. D ← r2−1C(m);

11. B̄′ ← r1D − ê;

12. U1 ← α′D + β′Ā′;

13. U2 ← γD +
∑

i∈I δiHi;

14. commits← (Ā, Ā′, B̄, B̄′, U, U1, U2, D);

15. open← (r, r1, r2, α, α′, β, β′, (σi)i∈I);

16. return (commits, open).

Figure 5.1: Complete BBS Credential Scheme with Accumulator-Based Re-
vocation

54

Update We assume that before update his membership witness, the has
fetched the list of update polynomials ∆t+n

t+1 from the public repository.
Then, the holder executes WitUpBatchH, which directly returns the up-
dated witness At+n (Line 2).

Proofs The proofs (i.e., ProofH), and verification (i.e., VerifyV) algo-
rithms follow the binding protocol defined in Section 5.1.2. We have split
ProofH into Proof .InitH, and Proof .FinalH for better readability.

Note that the additional overhead of the binding protocol, compared to
executing a single BBS proof, is limited to the overhead introduced by the
Σ-protocol for membership verification, which we analyzed in Section 4.3.3.

5.2.2 Modular Construction for Adaptively-Sound Accumu-
lators

Soundness is a crucial security property for cryptographic accumulators, as
it makes unfeasible for attackers to forge membership proofs. As mem-
bership proofs are used to prove non-revocation, a sound accumulator en-
sures that revoked holders cannot cheat on their status. We remind the
reader that soundness is defined in two distinct forms, offering different
levels of security. Non-adaptive soundness (Definition 2.2.2), requries the
attacker to commit to a list of elements to be added/removed in advance.
A non-adaptively sound accumulator remains secure against attackers who
cannot modify their strategy after observing the accumulator’s value and
update messages. On the other hand, adaptively sound accumulators (Def-
inition 2.2.3) are secure against adversaries who can modify their strategy
based on what they observe.

As noted in [Bal+17], non-adaptively sound accumulators can be safely
used to accumulate randomly selected elements, as each element’s choice
is independent of the others. Building on this observation, the authors
define a modular construction for an adaptively sound dynamic accumula-
tor ACC. Their construction integrates an adaptively sound positive accu-
mulator ACCA, and a non-adaptively sound positive dynamic accumulator
ACCNA, as follows:

- to add an element x into ACC, a random element r is added into
ACCNA, and (r, x) is added into ACCA;

- to delete the element x, the random element r is removed fromACCNA;

- to prove x ∈ ACC, the prover needs to show:

r ∈ ACCNA ∧ (x, r) ∈ ACCA

.

55

This modular construction has been used in [Bal+17; KB21]. In the next
section, we apply the same approach to prove that our BBS scheme defines
a positive dynamic adaptively sound accumulators.

5.2.3 On the Adaptive Soundness of our Scheme

In the e-ID setting, holders are already associated with a positive adaptively
sound accumulator ACCA, which is the BBS signature. More precisely,
the issuer’s public key corresponds to the accumulator value, and the BBS
signature is the membership witness. In fact, a BBS signature certifies that
a list of attributes m (i.e., a message) describing a holder is contained in
the accumulator. Clearly, the issuer can add holders to the accumulator, by
signing other messages with his private key. However, as the issuer’s public
key is static, accumulated messages cannot be deleted, i.e., holders cannot
be revoked.

To support deletions, in Chapter 4 we designed a additional positive
dynamic accumulator. Our initial construction (Section 4.2), adopts the
non-adaptively sound accumulator presented in [KB21, Section IV]. The
extended version which supports batch operations preserves non-adaptive
soundness, as we proved in Section 4.4.6.

In the previous section, we presented a construction that integrates the
two accumulators (Section 5.2.1). After executing IssueI , a new holder is
provided with a membership witness-element pair σ ← (A, e), where e is
chosen at random. The element e is also added in the attribute list m′

describing the holder, producing the message m←m′ ∪{e} which is signed
with BBS. The resulting signature σ̂ is also given to the holder. Finally, we
have:

• an efficient accumulator ACCNA, containing the random element e;

• a BBS public key ACCA containing (e, m′);

• a Σ-protocol for presentations which succeeds only if both e ∈ ACCNA∧
(e,m′) ∈ ACCA (as we prove in Section 5.3);

Hence, our final construction defines a positive dynamic adaptively sound
accumulator based on BBS signatures.

5.2.4 On Holders Unlinkability

The scheme we presented in Figure 5.1, is designed to support unlinkable
presentations while also providing an anonymous and efficient revocation
method. As we show in Section 5.2.3, the protocol that binds BBS disclo-
sure proofs and non-revocation proofs is zero-knowledge, therefore a verifier
cannot link subsequent presentation from the same holder.

56

Now, let us consider the issuer ’s perspective. When a holder updates his
credential, he requests updates starting from the last accumulator version for
which he had a valid witness. Let Vt be the last accumulator for which the
holder has a valid witness, and Vt+n be the current accumulator, the holder’s
update request leaks the update interval [t, t + n]. By keeping the history
of all update intervals, a issuer can correlate subsequent update requests,
similarly as in [JLM22, Appendix A.3].

Note that, all intervals with the same ending point, have the same prob-
ability of being the starting point of the next update request (i.e., they yield
an anonymity set). Hence, as the number of holders increases, the attack
becomes more complicated, since many updates will share the same ending
points. We underline that, with revocation epochs, the time window for the
attack can be greatly reduced: at the end of each epoch, every holder will
get an up-to-date witness, and the previous update history becomes useless.
Furthermore, as we provide an efficient method for aggregating multiple
batch update polynomials (Section 4.4.4), fuzzing techniques can also be
effective. For example, a holder who needs updates for the interval [t, t+ n]
can split requests into multiple sub-intervals: he can request update polys
(∆t−2...∆t+k), (∆t+k−4...∆t+n), and merge them into ∆t+1→t+n (discarding
the useless ones).

As a final remark, throughout this thesis, we assume that holders commu-
nicate using an anonymous communication system (e.g., TOR) or a trusted
VPN provider. Without such an additional obfuscation layer, holders could
be trivially linked, for example, by tracking their IP addresses.

5.3 Security Analysis of the Binding Protocol

In this section, we prove that the protocol described in Section 5.1.2 is both
sound and (L)HVZK. Our work is based on the on the security proofs of the
individual BBS Σ-protocols presented in [TZ23].

5.3.1 Soundness

We start by proving 2-special soundness, by analyzing a 2-tree of accepting
transcripts.

Assume a prover executes Proof initialization, which returns the BBS
commitments Ā′, B̄′, D, U1, U2, and the membership proof commitments Ā, B̄, U .

Given a 2-tree of accepting transcripts with challenges c1, c2 ∈ Zp (with
c1 ̸= c2), we have:

• BBS proof parameters (s′1, s
′
2, t
′
1, t
′
2, z1, z2, (ui,1)i∈I , (ui,2)i∈I), s.t. for

57

j ∈ {1, 2}:

ẽ(Ā′, X̂) = ẽ(B̄′, G2), (4.1)

U1 + cjB̄
′ = s′jD + t′jĀ

′, (4.2)

U2 + cjCJ(m) = zjD +
∑
i∈I

ui,jHi. (4.3)

• membership proof parameters (s1, s2, t1, t2) such that for j ∈ {1, 2}:

ẽ(Ā,X) = ẽ(B̄,G2) (5.1)

U + cjB̄ = sjV + tjĀ (5.2)

tj = uk,j (5.3)

We start by showing that we can extract a valid BBS proof on a message
m, such that m′ ⊂m, and m[k] = µk.

By (4.2), (4.3) it holds:

(c1 − c2) B̄
′ = (s′1 − s′2) D + (t′1 − t′2) Ā

′, (6.1)

(c1 − c2) CJ(m) = (z1 − z2) D +
∑
i∈I

(ui,1 − ui,2) Hi. (6.2)

Then, we extract r1 =
(s′1−s′2)
(c1−c2) , r2 = (z1−z2)

(c1−c2) , ê =
(t′2−t′1)
(c1−c2) , and µi =

(ui,2−ui,1)
(c1−c2) for i ∈ I.

Now, we can rewrite (6.1), (6.2) using the extracted values:

B̄′ = r1D − êĀ′, (7.1)

CJ(m) = r2D +
∑
i∈I
−µiHi. (7.2)

Depending on the values of r1, r2, we have three different cases:

• r1 = 0: from (7.1), we have B̄′ = −êĀ′. Furthermore, by (4.1) it holds
that ẽ(Ā′, X̂) = ẽ(−êĀ′, G2). By bilinearity, x̂ = −ê is the secret key
associated with X̂. Our extractor can use x̂ to output a valid BBS
signature on m such that m′ ⊂m, and m[i] = µi for all i ∈ I;

• r1 ̸= 0 ∧ r2 = 0: by (7.2) it holds:

0G1 = CJ(m) +
∑
i∈I

µiHi

= G1 +
∑
i∈J

m[i]Hi +
∑
i∈I

µiHi.

58

Setting m[i] = µi for all i ∈ I, we can rewrite the equation above as:

0G1 = C(m)

For Â = 0G1 , we have ẽ(Â, X̂) = ẽ(C(m) − êÂ, G2). Hence, our
extractor can produce a valid BBS signature (0G, ê) for m such that
m′ ⊆m and m[i] = µi for all i ∈ I.

• r1 ̸= 0 ∧ r2 ̸= 0: set Â = r2r1
−1Ā′. If we multiply both sides of (4.1)

by r2r1
−1, we obtain:

ẽ(Â, X̂) = ẽ(r2r1
−1B̄′, G2).

From (7.1), (7.2) we have:

r2r1
−1B̄′ = r2D − êÂ

= CJ(m) +
∑
i∈I

µiHi − êÂ.

Setting m[i] = µi for all i ∈ I, we can rewrite the equation above as:

r2r1
−1B̄′ = C(m)− êÂ.

As ẽ(Â, X̂) = ẽ(C(m)−êÂ, G2), our extractor can produce a valid BBS
signature (Â, ê) on a message m such that m′ ⊆m and m[i] = µi for
all i ∈ I.

Now, let us show that our extractor can also compute a valid membership
witness. Similarly as before, from (5.2) we obtain:

(c1 − c2)B̄ = (s1 − s2)V + (t1 − t2)Ā.

Setting r = (s1 − s2)/(c1 − c2), and e = (t2 − t1)/(c1 − c2), we rewrite
the above equation as:

B̄ = rV − eĀ. (8.1)

Depending on the value of r we have two cases:

• r ̸= 0: call A = r−1Ā. By (8.1) we have:

r−1B̄ = V − eA,

and by (5.1):
ẽ(A,X) = ẽ(V − eA,G2).

Therefore, (A, e) is a valid membership witness-element pair for the
public accumulator V.

59

• r = 0: by (8.1), B̄ = −eĀ, therefore ẽ(A,X) = ẽ(−eĀ,G2). This
implies that x = −e is the secret key associated with X and our
extractor can use it to output a valid membership witness for V.

Finally, we demonstrate the binding between the two extracted proofs
(i.e., e = m[k]). By (5.3), we can rewrite e substituting tj with uk,j , which

gives: e =
uk,2−uk,1

c1−c2 = µk. As we showed before, our extractor can always

compute a valid BBS signature σ = (Â, ê) on a message m s.t. m[k] = µk.
Therefore, the BBS signature σ, and the membership witness σ = (A, e) are
linked.

5.3.2 Zero-Knowledge

We prove that the protocol is L-HVZK, for L which on inputs (G1, x, x̂)
outputs a tuple (P, xP, x̂P). As noted in [TZ23], the oracle L does not leak
anything more than any valid message-signature pair. In fact, given (A, e),
(Â, ê) and the respective m, and one can compute:

xA = V − eA.

and:
x̂Â = C(m)− êÂ,

Our simulator S is given an instance X = (m′, V) and a tuple pair
(P, x̂P, xP). The simulator starts by generating parameters for the mem-
bership proof :

• picks r←$Zp and computes Ā = rP and B̄ = r(xP);

• picks random s←$Zp, and sets t = uk;

• finally, it sets U = sV + tĀ− cB̄.

The points Ā, B̄, and the scalars s, c are distributed uniformly at random
as by an honest execution of our protocol. Furthermore, t is uniquely de-
termined by uk (3.1), and U is uniquely determined by (Ā, B̄, V, s, t) (2.1).
By construction, it is easy to check that the simulated values satisfy the
verification equations (2.1), (2.2), (3.1).

Then, our simulator generates parameters for the BBS proof on m′:

• picks r̂←$Z∗p, and computes Ā′ = r̂U and B̄′ = r̂(x̂U);

• picks a random challenge c←$Zp;

• picks random s′, t′, z, (ui)i∈I←$Zp, and D←$G1;

• defines m ∈ Zl
p s.t.: m[i] = ui for all i ∈ I, m[i] = m′[j] for j ∈ [|J |],

and i ∈ J indicating the index associated to m′[j] within the set of
disclosed indexes;

60

• computes U1 = s′D+t′Ā′+−cB̄′, and U2 = zD+
∑

i∈I uiHi−c CJ(m).

As by an honest execution, the points Ā′, B̄′, D and the scalars s′, t′, z, (ui)i∈I ,
are uniformly distributed. Furthermore, as by (1.2) and (1.3), U1 and U2

are uniquely determined by the above values and the disclosed message m′.
Since we also have B̄′ = x̂Ā′, it is easy to see that all the BBS verification
equations (i.e., (4.1), (4.2), (4.3)) hold for the simulated values.

We have proven that the verifier’s view generated by our simulator is
indistinguishable from the view obtained after an honest execution of the
protocol.

61

Chapter 6

Private Information
Retrieval for Updating
Witnesses

In this chapter, we explore the PIR problem and assess whether PIR schemes
are well-suited for providing alternative witness update methods. We be-
gin by introducing the PIR problem and explaining its relevance to anony-
mous witness updates (Section 6.1). Next, we examine some state-of-the-art
single-server PIR schemes and estimate their performance in our setting
(Section 6.2). Finally, we consider two-server PIR schemes and evaluate
their applicability through a proof-of-concept implementation (Section 6.3).

6.1 Introduction

The PIR problem involves two entities: a client and a server. The server
maintains a set of public elements in a databaseD = {d1, . . . , dn}. The client
is interested in a specific element di but wishes to keep his interest private
from the server. A PIR protocol allows the client to retrieve the desired
element di without revealing any information about the queried element to
the server. It is important to note that PIR schemes do not necessarily
protect the privacy of the server’s entire database; a client could potentially
learn more than just the queried entry.

The witness update problem (Section 4.4.1), is a specific instance of
PIR: the issuer maintains a server with a list of up-to-date witnesses D =
{A1, . . . , AN}. A credential holder needs to fetch his witness, say Ai, with-
out revealing it to the issuer. In our threat model, the list of witnesses is
not considered private: even if someone fetches a holder’s witness Ai, he
cannot use it to produce a valid membership proof, as he misses the holder’s
associated element ei.

The accumulator update strategy presented in Section 4.4, achieved ef-

62

ficient and privacy-preserving updates but it suffered from linear communi-
cation complexity. In this chapter, we explore alternative update methods
based on PIR, with the goal of improving the communication complexity.
We remark that secure PIR schemes inherently eliminate any possible leak-
age regarding the holder’s query.

6.2 Single-Server PIR Schemes

Let us first consider the setting where the database D is maintained by
a single server. A naive way to implement PIR would be downloading
the entire issuer’s database. Obviously, this preserves the user’s privacy,
but requires Ω(N) communication, where N is the size of the database.
To be considered efficient, a PIR scheme must improve the communication
complexity of the naive solution.

PIR from homomorphic encryption Many single-server PIR schemes
are based on homomorphic encryption. The general idea is to represent
a database D of size N as a

√
N -by-

√
N matrix. A client interested in

the element in position (i, j), defines a query vector q⃗ of
√
N elements.

The vector q⃗ = (0, . . . 0, 1, 0, . . . , 0) is filled with 0s, except for the entry
in position j, which is set to 1. Next, the client computes the encrypted
query q⃗enc = Enc(q⃗), where Enc is an homomorphic encryption scheme, and
sends q⃗enc to the server. The server computes the answer a⃗enc = D · q⃗enc and
returns it to the client. Due to the homomorphic properties of the encryption
scheme we have: a⃗enc = D · q⃗enc = Enc(D · q⃗). Hence, decrypting the answer
a⃗ ← Enc−1(⃗aenc) yields the j-th column of the database. Although this
approach reduces the communication costs of the naive solution by only
exchanging 2

√
N ciphertext elements, it requires the server to compute N

ciphertext additions and multiplications for each query.
In this thesis, we considered two recent state of the art single PIR ap-

proaches [Hen+23; DPC23], based on the Learning with Errors (LWE) as-
sumption, and the additively-homomorphic Regev encryption scheme [Reg09].
Both approaches reduce the server computation by requiring each client to
download a ’hint’ about the database content. All subsequent client queries
utilize this same hint, enabling the server to respond more efficiently, after
some initial pre-computation.

Simple PIR Simple PIR ([Hen+23]) achieves high server throughput, re-
ducing by 99% the number of required ciphertext operations for answering
queries. However, each client must download a hint of size n

√
dN log q,

where N is the dimension of the database, n = 1024 is the lattice security
parameter, q = 232 is the ciphertext modulus for the Regev encryption,
and d is the number of plaintext database entries required to represent one

63

element. According to their simulator1, using the suggested security param-
eters and considering a database of N = 220 witnesses, each 48B in size,
Simple PIR would require downloading a hint of approximately 25MB. For
comparison, downloading the entire database would require around 50MB.
For static databases, clients can amortize the cost of the one-time download
by reusing their hint across multiple queries. Unfortunately, in our setting,
new revocation events invalidate all previous witnesses, and every entry in
the database must be updated. As a result, holders would need to download
a new hint for every different update, making the approach infeasible.

FrodoPIR With SimplePIR, representing a single witnesses requires many
database entries, which implies having high d values (i.e., in their simulation
d = 39). As the hint size is n

√
dN log q bits, d values are a multiplicative

factor of the database size N , and have considerable impact in the commu-
nication complexity.

The approach of FrodoPIR [DPC23] is very similar to SimplePIR, but it
uses smaller hints of size ≈ nd log q (i.e., independent of N). Smaller hints
comes at the cost of having higher per-query communication of ≈ N log q. In
our use case, this translates to hints of ≈ 221.7KB and online communication
of ≈ 4.2MB. With additional optimizations (i.e., the sharding techniques
discussed in Section 6.1), we could achieve a total communication cost of
1.8 MB. Note that this is a 14× improvement with respect to Simple PIR.
However, our original accumulator’s update strategy, required downloading
80B for each revocation that happened since the lat update. Therefore, in
terms of holder communication, FrodoPIR only starts to outperform the
default strategy after ≈ 22.000 revocations.

In conclusion, single server PIR schemes do not appear to offer sufficient
advantages to justify the added complexity of integrating them into our
accumulator scheme. In the next section, we explore two-server PIR schemes
that have extremely low communication complexity, though they operate
under different threat assumptions.

6.3 2-Server PIR for Efficient Witness Update

6.3.1 Distributed Point Functions

A point function is a function that evaluates to 0 for every element in its
domain, except for a specific element where it returns a designated value.
More formally, given some x, y ∈ {0, 1}∗, a point function Fx,y is defined as:{

Fx,y(x
′) = 0|y| ∀ x′ ∈ {0, 1}∗ s.t. x′ ̸= x,

Fx,y(x) = y.

1https://github.com/ahenzinger/simplepir/tree/438b4590aceedf76c7588b03125dfc0db39e361f

64

https://github.com/ahenzinger/simplepir/tree/438b4590aceedf76c7588b03125dfc0db39e361f

The notion of Distributed Point Functions (DPFs) was introduced in
[GI14]. A DPF can be seen as splitting a point function Fx,y, into a pair2 of
additive shares k0, k1, such that each share ki individually hides x, y. The
shares k0, k1 are also called keys.

More precisely, a DPF for a point function Fx,y, is defined as a pair of
PPT algorithms (Gen, Eval):

- the generation algorithm Gen is such that:

Gen(x, y)→ (k1, k2) ∀ x, y ∈ {0, 1}∗

- the evaluation algorithm Eval, on input two keys k1, k2, is such that:{
Eval(k0, x

′)⊕ Eval(k1, x
′) = 0|y| ∀ x′ ∈ {0, 1}∗ s.t. x′ ̸= x,

Eval(k0, x)⊕ Eval(k1, x) = y.

(6.1)

A DPF must satisfy correctness and secrecy. Correctness ensures that
Eval on input an element x′ ∈ {0, 1}∗, and two honestly-generated keys for
a point function Fx,y, returns additive shares of Fx,y(x

′). Secrecy ensures
that each key does not reveal anything about x, y (except for the input
and output domains). In the following, we report the formal definitions of
completeness and secrecy given in [GI14].

Completeness: for all x, x′ s.t. |x| = |x′|:

Pr[(k0, k1)← Gen(x, y) : Eval(k0, x
′)⊕ Eval(k1, x

′) = Fx,y(x
′)] = 1.

Secrecy: for x, y ∈ {0, 1}∗, and b ∈ {0, 1}, let Db,x,y be the probability
distribution of kb induced by Gen(x, y). Then, there exists a PPT algorithm
Sim such that the following distributions are indistinguishable:

- {Sim(b, |x|, |y|)}

- {Db,x,y}b∈{0,1},x,y∈{0,1}∗

As noted by Gilboa and Ishai [GI14], a trivial DPF can be implemented

by letting k0, k1 be random vectors in (F2|y|)
2|x| , such that k0[x

′] + k1[x
′] =

0 for all x′ ∈ {0, 1}|x| s.t. x′ ̸= x, and k0[x] + k1[x] = y. This DPF is
perfectly hiding, as both keys are completely random. However, the key size
is exponential in x, y.

The authors address this problem by recursively replacing parts of the

2In this thesis, we consider the case where the number of derived shares is 2, but in
general we can have more shares.

65

keys k1, k2 with appositely selected seeds of a pseudo-random function. The
recursive evaluation algorithm Eval uses a pseudo-random generator to ex-
pand each seed and compute the answer. The seeds for the two keys are
chosen such that Eval behaves exactly as a DPF (i.e., as by eq. (6.1)). The
author’s solution compresses the key size up to 4n(λ − 1) bits, where λ is
the security parameter, and N = 2n is the number of users. This com-
pression comes at the cost of making the scheme computationally hiding,
meaning that the derived keys are only computationally indistinguishable
from random strings. For more details we refer to the original paper.

In [BGI16], the authors additionally shrink the key size by a factor of
4. They also design an optimized algorithm for full-domain evaluation (i.e.,
computing the DPF over all possible input elements), which is useful for PIR
applications, as we explain the next section. The Eval function traverses a
binary tree represented by the input key, each input element x′ determines
a different root-to-leaf path according to its binary representation. To com-
pute the evaluation correctly, at each intermediate node a correction word
is applied by one of the two server. To correctly synchronize this process,
the authors add a single bit b ∈ {0, 1} as additional argument to the input
of Eval. The clients sets b = 0 when he queries the first sever, and b = 1
when querying the second.

On an database of N = 2n one bit entries and a security parameter λ,
the authors achieve the following upper bounds:

- key size: λ(n− log λ) bits;

- key generation: 2(n− log λ) AES operations;

- single root-leaf evaluation: n− log λ AES operations,

- full-domain evaluation: N log λ AES operations,

where AES is the pseudo-random generator used for expanding the key. We
underline that the key size is logarithmic in the number of users.

In the next section, we explain how DPFs can be used in a 2-server PIR
scheme.

6.3.2 2-Server PIR from DPFs

DPFs can naturally be used as a building-block for multi-server PIR schemes.
Let us consider a 2-server PIR setting, where each server has a binary
database D = {d1, . . . , dN}, with each di ∈ F2. A client who is inter-
ested in the i-th bit, generates a DPF for the point function Fi,1 using the
construction in [BGI16].

The generation algorithm Gen outputs two shares k0, k1 such that:{
Eval(0, k0, j)⊕ Eval(1, k1, j) = 0 ∀j ̸= i

Eval(0, k0, i)⊕ Eval(1, k1, i) = 1.
(6.2)

66

The client queries each of the two servers, with a different pair (b, kb).
Then, each server computes the answer as follows:

ab =

N⊕
j=1

Eval(b, kb, j) · dj ,

and sends ab ∈ F2 back to the client.
Thanks to the properties of DPFs, the client can reconstruct the target

entry by simply computing a1 ⊕ a2. In fact, from eq. (6.2) it follows:

a1 ⊕ a2 =
N⊕
j=1

(Eval(0, k0, j) · dj)⊕ (Eval(1, k1, j) · dj)

=

N⊕
j=1

dj · (Eval(0, k0, j)⊕ (Eval(1, k1, j))

= di (6.3)

Due to DPF secrecy, the client’s query leaks no information on the spe-
cific position of the target bit. Such assumption holds as long as the two
server do not collude.

The costs for running the above PIR scheme are:

- client: send two DPF keys k1, k2, and download the two answers
a1, a2 ∈ F2. The result is reconstud with a single xor operation;

- server: download one DPF key ki, and send the answer ai. To com-
pute the answer the server performs a full-domain evaluation (i.e.,
computes Eval for all inputs j ∈ [1, N]), an inner product between
the results of the evaluation and the respective database element, and
a final xor between all results;

6.3.3 Using 2-Server PIR for Anonymous Witness Update

In this section, we apply the 2-server PIR scheme to achieve anonymous
witness updates for the accumulator defined in Chapter 4.

We assume to have N = 2n credential holders, and 2 servers maintaining
a database of witnessesD = {A1, . . . , An}, where we denote asAi the witness
associated with the i-th holder.

Remember that each witness is an element of G1 ⊂ E(Fq), and over the
BLS12-381 curve it can be represented by |q| = 381 bits. In this regard,
call Compress the (invertible) function that maps a point P ∈ G1, into a
scalar p ∈ Fq.

Using the efficient construction in [BGI16, Section 3.2], we define a DPF
for the point function Fi,1 : {0, 1}n → Fq, which returns 0 on every input

67

j ∈ {0, 1}n such that j ̸= i, and 1 on input i. This corresponds to a pair
(Gen,Eval) such that:

(k0, k1)← Gen(1λ, i, 1,Fq),

and for every input j ∈ {0, 1}n:{
Eval(0, k0, j) + Eval(1, k1, j) = 0 if j ̸= i,

Eval(0, k0, i) + Eval(1, k1, i) = 1.

Note that, in our previous construction (Section 6.3.3), the output do-
main of Eval was F2. Therefore, we would have needed one distinct query
for each bit of the target witness, as we could only retrieve single bits at
a time. Instead, by choosing Fq as co-domain, we retrieve the full witness
with a single query.

Using the 2-server PIR protocol presented in Section 6.3.3, a client in-
terested in witness Ai queries each server with a different pair (b, kb), with
b ∈ {0, 1}. On input a query bit b, and the respective key kb, each server
computes the result as as follows:

ab =
2n∑
i=1

Eval(b, kb, i) ·Compress(Ai), (6.4)

with ab ∈ Fq. The client reconstruct the result as follows:

Ai = Compress−1(a0 + a1).

Correctness can be shown similarly as in the previous section (eq. (6.3)),
while secrecy follows from secrecy of the DPF.

6.3.4 Experimental Results

In this section we provide experimental results of an implementation for the
2-server PIR protocol for witness retrieval presented in the previous section.

As for Chapter 4, the results are generated after 30 independent runs on
a Mac M1 chip with 16GB of RAM. Remember that each witness has size
48 bytes.

Holder In Table 6.1, we measure the holder’s computational and commu-
nication costs for retrieving a single witness. The column ”Gen” contains
the computational cost for generating the DPF keys k0, k1, while column
”Reconstruct” indicates the cost for extracting the target witness from the
two answers a0, a1 ∈ Fp (i.e., A = Compress−1(a0 + a1)).

The upload cost, is determined by the dimension of the DPF key-pair
(k0, k1), while the download cost is given by the two answers a0, a1. Up to

68

logN Gen Reconstruct Upload Download

10 12.83 µs 1.30 ms 426 B 96 B
12 15.10 µs 1.24 ms 498 B 96 B
14 17.60 µs 1.32 ms 570 B 96 B
16 19.87 µs 1.31 ms 642 B 96 B
18 22.65 µs 1.35 ms 714 B 96 B
20 24.54 µs 1.36 ms 786 B 96 B
21 25.68 µs 1.40 ms 822 B 96 B
22 26.94 µs 1.40 ms 858 B 96 B
23 28.30 µs 1.18 ms 894 B 96 B

Table 6.1: Holder’s computational and communication costs for updating
witnesses with increasing number of users.

logN Answer Download Upload

10 0.79 ms 213 B 48 B
12 3.07 ms 249 B 48 B
14 12.37 ms 285 B 48 B
16 49.82 ms 321 B 48 B
18 197.53 ms 357 B 48 B
20 791.83 ms 393 B 48 B
21 1.59 s 411 B 48 B
22 3.17 s 429 B 48 B
23 6.34 s 447 B 48 B

Table 6.2: Issuer’s computational and communication costs for answering
queries with increasing number of users.

n = 23 (i.e., N = 8388 608), the total computational costs remains under
2 ms, while the maximum communication cost is around 1KB. Note that
both values are independent of the number of revocations that happened
since the holder last updated. This makes updating with 2-pir extremely
efficient on the holder side.

Issuer In Table 6.2, we show the issuer’s computational and communica-
tion cost. The Answer column indicates the computational time required
for answering each individual query (as by eq. (6.4)). The server run-time is
determined by computation of the full-domain evaluation using the holder’s
key, followed by calculating the inner product of each result with its cor-
responding database element. Due to time constraints, we tested a non-
optimized version of Eval, which does not implement the early termination
optimization described in [BGI16]. As a result, computing the full-domain
evaluation of the database dominates the issuer’s run-time. For instance,

69

when N = 223, the full domain evaluation costs around 6.1s, while the inner
product only takes the remaining 0.2s.

Reducing Issuer’s Answer Time Our first observation is that the di-
mension database does not necessarily need to reflect the actual number of
holders. This is because each holder is anonymous with respect to all other
holders in the same database (i.e., each database defines an anonymity set).
Assuming to have 10M holders, by splitting their witnesses into 10 different
databases we achieve ≈ 10× improvement in server performances, while still
maintaining anonymity sets of 1M.

Additionally, we can reduce the cost of full domain evaluation by restrict-
ing the domain size from N to N/k, at the cost of increasing the holder’s
download size by a factor of k. To achieve this, we can view a database
containing N = 220 witnesses as a k × (N/k) matrix. Each holder decom-
poses the index of the target witness into a pair (irow, icol), and computes
the DPF keys embedding the point function Ficol,1 (i.e., for retrieving the
icol-th element of each row). To generate the answer, each server computes
a full evaluation on an input domain of size N/k (instead of N). The results
are used for computing k inner-products (one for each row), generating k
different answers ab,1, . . . , ab,k ∈ Fq. After downloading the answers, the
client keeps only the one corresponding to the row containing his witness
(i.e., ab,irow), and discards the rest. Then, he reconstructs his witness as
usual: Ai = Compress−1(a0,irow + a1,irow).

In Table 6.3 we show the improvements for a database of size N = 220,
with different values of k. We notice that for k = 28, the issuer’s answer
time is one order of magnitude faster than in Table 6.2, while the holder’s
download size of 25 kilobytes is still very practical.

Computation Communication

log k Domain Evaluation Inner Product Total Query Answer

10 0.73 ms 46.78 ms 46.23 ms 213B 49 152B
9 1.46 ms 45.36 ms 46.82 ms 231B 24 576B
8 2.97 ms 45.98 ms 48.95 ms 249B 12 288B
7 5.89 ms 45.99 ms 51.88 ms 267B 6144B
6 11.70 ms 45.68 ms 57.38 ms 285B 3072B
5 23.51 ms 45.52 ms 69.03 ms 303B 1536B
4 47.27 ms 46.40 ms 93.67 ms 321B 768B
3 94.37 ms 47.65 ms 142.02 ms 339B 384B
2 185.84 ms 45.97 ms 231.81 ms 357B 192B
1 372.82 ms 47.84 ms 420.66 ms 375B 96B

Table 6.3: Issuer’s communication costs and total run-time for ansewering
a single query with 1M users and decreasing values of k. The total answer
time is split in full-domain evaluation, and computation of the inner product.

70

As we can observe from the run-time, the improvements result only from
reducing the input domain size of the evaluation from N to N/k, while the
number of multiplications required for the inner product remains constant
(i.e., N).

We highlight that the inner product computation is perfectly paralleliz-
able: we can split the database rows between t CPU cores, and reduce the
answer time by almost a factor of t. For instance, with t = 24 cores, and
k = 28 we would achieve a total answer time of around 5.84 ms for each
query.

6.3.5 An Alternative Update Strategy

From the results presented in the previous section, we conclude that 2-server
PIR has the potential of being a scalable solution for achieving anonymous
witness updates. With respect to directly fetching an up-to-date witness,
2-server PIR only increases the number of downloaded bits by a factor of 2,
while the number of uploaded bits (i.e., the two DPF keys), is logarithmic
in the number of holders. In comparison, the accumulator’s update algo-
rithm WitUpH, has a linear communication overhead in the number of
revocations.

Therefore, we could think of integrating PIR in the accumulator scheme
presented in Chapter 4. Obviously, we would require a different threat model
with (at least) two non-colluding servers. This scenario could be realistic
when considering a wider e-ID ecosystem, where other digital credentials are
issued on top of the government-issued e-ID by private service providers. In
this setting, one of the two servers can be hosted by the government, and
the other by the private issuer. Additional (semi-)trusted entities can be
involved depending on the use case.

Assuming to have 10M users, an issuer adopting the naive PIR solution
presented in Table 6.2 would take around 2.5 years to answer every client.
Splitting the database into 10 smaller databases of 1M entries and using
the optimizations discussed in the last section, we would reduce the issuer’s
total computational to 13 hours, or to 48 minutes using 16 cores. By using
more cores and parallellizing the domain-evaluation, we can achieve better
results.

Due to the considerable server costs for answering client queries, our 2-
server PIR scheme would probably not be suitable for satisfying every update
request. However, we could think of it as a replacement for revocation
epochs. This could work as follows:

- the issuer sets a threshold u on the maximum update size that holders
can afford to compute using the regular accumulator’s update algo-
rithm. When the number of updates reaches the threshold, the issuer
sends up-to-date witnesses to the PIR servers.

71

- when some holder has too many updates to compute, he queries the
PIR servers and efficiently retrieve a new witness. The witness is
always less than u revocations behind the current accumulator value,
therefore the holder computes updates for at most u revocations.

Note that holders queries are indistinguishable from random: even when
a single holder performs a query, each server do not learn anything from the
query itself. The advantage of 2-PIR compared to revocation epochs is that
PIR queries can be performed on-demand and only by holders that have a
large number of updates to compute.

As a final remark, we note that our exploration of multi-server PIR
techniques was intended to assess the feasibility of the approach, rather than
to identify the optimal solution for our use case. We have already mentioned
that our implementation does not optimize the Eval algorithm with the
early termination technique introduced in [BGI16]. As a comparison, the
authors in [KOR19] have produced an optimized open-source C++ library 3,
which seems to require less than 0.32 ms for a full domain evaluation with
a database of 1M entries. Note that, as the cost of computing the inner
product would become the bottleneck, the final server answer time would
still be around 46 ms, with the advantage that holders would download a
single answer per server (i.e., 98B in total).

A more in-depth study on 2-server PIR schemes and their application to
anonymous witness update is left as interesting future work.

3https://github.com/dkales/dpf-cpp/tree/master

72

https://github.com/dkales/dpf-cpp/tree/master

Chapter 7

Conclusion

In this chapter, we first give a brief summary of our improvements compared
to some related accumulator schemes (Section 7.1). Then, we conclude this
thesis with some final considerations (Section 7.2).

7.1 Improvements to Related Works

In this section, we highlight the improvements introduced by our revoca-
tion proposals compared to the related work on pairing based accumulators
([Ngu05; VB22; KB21; JLM22]).

Efficient membership proofs the accumulator constructions in [VB22;
JLM22] adopt the zero-knowledge membership proof introduced in [Ngu05],
which require 4 pairings operations. On the contrary, our proofs are based on
recent sigma protocols for BBS disclosure, which do not require any pairing
operation (see Section 4.3). In a software implementation, we showed that
our scheme reduces the prover’s run-time by 10× with respect to previous
approaches.

Efficient Batch Update some related works [VB22; JLM22] use poly-
nomials to batch multiple updates. Evaluating the polynomials on some
holder’s input yields the update coefficients. However, in both [VB22], and
[JLM22] (single-server construction), the holder evaluates the polynomials
by definition, incurring in a overhead of m point multiplication. In Sec-
tion 4.4.3, we applied Pippenger’s approach for MSM to speed up polynomial
evaluation. For increasingly large batch sizes, we demonstrated that our ap-
proach yields a performance increase of 3 to 4×, considerably improving the
holder’s runtime.

Aggregating Multiple Batches the works of Vitto et al. [VB22], and
Jacques et al. [JLM22] do not offer any efficient way for aggregating sub-

73

sequent batch updates. To update from time t to time t + n, holders have
two alternatives: 1. sequentially apply the n update polynomials that were
published after each batch-deletion, 2. ask the issuer to compute a polyno-
mial batching all updates ”on the fly”. Each strategy comes with its own
drawbacks:

1. computing update polynomials has quadratic complexity, hence cre-
ating them on-demand introduces high overhead on the issuer. The
authors in [JLM22] partially address this problem by setting an upper-
bound on the maximum degree of each polynomial. However, limiting
the polynomial size also reduces the speed-up achieved by using Pip-
penger’s method, which is proportional to the batch size;

2. the issuer might need to wait before publishing an update, so that he
can batch more deletions in a single polynomial and allow for more
efficient client evaluation (e.g., using Pippenger’s method). However,
when revocations need to be timely enforced, the issuer has less time
to incorporate deletions in the batch, rendering the update more costly
for holders;

In our accumulator scheme the issuer does not need to compute any
update polynomial. Instead, he can instantly publish individual updates
produced by the single deletion algorithm, and publish the respective update
messages. Clients can then aggregate all the individual update messages
in a single polynomial, at the cost of only m additional multiplication in
Fp (see Section 4.4.4). In the library we used for our implementation, a
single scalar multiplication takes around 18 ns, so the induced overhead
remains negligible for any reasonable update size (e.g., around 10ms for
m ≃ 500 000). As a result, we both eliminate the quadratic complexity
of computing update polynomials, and allow clients to always update in a
single batch.

Limiting Holder Updates None of the related work1 proposes a way
to limit the maximum number of updates that holders need to compute.
In large credential systems or with high revocation rates, this can impose
considerable overhead on holders that have been offline for long periods.
Depending on the trust assumptions, we proposed two solutions:

- in the single-server setting, we proposed the introduction of revocation
epochs (Section 4.5). At the end of each revocation epoch, the issuer
efficiently computes up-to-date witnesses for every user, and distribute
them as a periodic update (e.g., once per week). As a result, before

1Except for the multi-server solution in [JLM22], which outsources the update using
MPC

74

presenting a credential, users need to update only for revocations that
occurred inside the current epoch, independently on when they last
used their credential.

- assuming to have (at least) two non-colluding servers, we proposed to
replace revocation epochs with PIR. Two PIR servers maintain a list
of up-to-date witnesses, that are always updated after a given num-
ber of revocations occurred, say 5000. Thanks to the hiding property
of PIR schemes, clients can just query their witness on-demand in-
stead of periodically fetching an up-to-date witness. Then, they only
need to update for the number of revocations after the retrieved wit-
ness was last updated (i.e., at most 5000). In our implementation
(Section 6.3.4), we showed that with 223 users, fetching an up-to-date
witness requires less than 1 kilobyte independently on the batch size,
and around 1.5 ms for any tested number of users.

Integrating accumulators-based revocation and BBS credential in
Chapter 5, we proposed a protocol to bind accumulator membership proofs
to BBS disclosure proofs. In this way, we integrate our revocation scheme
to BBS credentials and increase the security properties (i.e., soundness) of
our accumulator, without requiring the additional static signature used in
[Ngu05; KB21; JLM22].

7.2 Conclusions

The purpose of this thesis was to assess whether it is possible to enforce
privacy-preserving revocation of anonymous credentials on a national scale.
Throughout the thesis, we mainly focused on cryptographic accumulators,
as they enforce instant revocation and support unlinkable non-revocation
proofs. The main argument against using accumulators in e-ID systems is
that, after a credential is revoked, every holder in the system must perform
computationally expensive update operations.

In Chapter 4, we improved existing accumulator solutions, achieving
better update performances. Considering a worst-case scenario with 10M
credentials and a 2% yearly revocation rate2, we reduced the overhead of
updating witnesses after a month of inactivity (i.e., 16.5K revocations) to
less than 0.4s. In terms of communication, the latter scenario would require
downloading around 1.3MB of updates. Despite such overhead could be
considered acceptable, we proposed two methods to limit the maximum
number of holder updates, namely revocation epochs and two-server PIR.
We can safely conclude that cryptographic accumulators can already be

2Consider that even in a less secured environment as the web PKI, the revocation rate
is normally less than 1%

75

considered a practical revocation method in a national e-ID setting, offering
a viable alternative to the popular (but linkable) list-based solutions.

Beyond the scope of this thesis, we could consider even larger use cases.
For instance, we could ask ourselves whether accumulator-based revocation
could scale sufficiently to handle revocation for all credentials within the
European Union. There are currently around 450M people living in the
EU3, assuming that everyone gets a credentials and a 2% yearly revoca-
tion rate, we would have around 25K daily revocations. Handling all these
revocations with a single accumulator would probably be unfeasible, espe-
cially considering the high communication costs. Furthermore this solution
would introduce governance problems: if the accumulator is shared (i.e., ev-
ery country knows the trapdoor) states could potentially revoke credentials
issued by other states.

In a more realistic scenario, each country would issue its own national
e-ID and use a dedicated accumulator. Germany, the largest country in Eu-
rope, has around 85 million inhabitants. Managing this number of creden-
tials with a single accumulator could be challenging. However, large nations
can manage their credential space by using multiple accumulators (e.g., by
randomly assigning each credential to an accumulator). This is because each
holder remains anonymous among all holders associated with a specific ac-
cumulator, which defines an anonymity set. In Germany’s use-case, using
8 different accumulators would achieve anonymity sets of size comparable
to that of the Swiss e-ID, with similar overheads to those discussed in this
thesis.

In conclusion, the scalability potential of accumulator-based revocation
is not limited to medium or small countries; with adequate infrastructure,
it could also be extended to larger nations and more complex settings, such
as the European Union. Further research on the types of infrastructure that
would best suit these settings could be an interesting topic for future work.

3https://european-union.europa.eu/principles-countries-history/

key-facts-and-figures/life-eu_en

76

https://european-union.europa.eu/principles-countries-history/key-facts-and-figures/life-eu_en
https://european-union.europa.eu/principles-countries-history/key-facts-and-figures/life-eu_en

Acknowledgments

To Dr. Martin Burkhart for guiding me with his continuous advice
and precious feedback.

To Prof. Serge Vaudenay for supporting me with his valuable insights
and extreme cordiality.

To Dr. Simone Colombo for suggesting multi-server PIR and for his
precious advice.

To Dr. Francesca Falzon for the interesting discussions on encrypted
databases.

To Mr. Jonas Niestroj, and Mr. Christian Heimann for their insights
on the Swiss e-ID.

To my brother Riccardo who inspired me to follow this path.

To my family and friends for being always there.

To energy drinks, for keeping me awake through this entire journey.

Without each and every one of you, this achievement would have never
been possible. Grazie!

Bibliography

[Bal+17] Foteini Baldimtsi et al. “Accumulators with Applications to Anonymity-
Preserving Revocation”. In: 2017 IEEE European Symposium
on Security and Privacy (EuroS&P). 2017, pp. 301–315. doi:
10.1109/EuroSP.2017.13.

[Bau+24] Carsten Baum et al. Cryptographers’ Feedback on the EU Digital
Identity’s ARF. 2024.

[BD93] Josh Benaloh and Michael De Mare. “One-way accumulators:
A decentralized alternative to digital signatures”. In: Workshop
on the Theory and Application of of Cryptographic Techniques.
Springer. 1993, pp. 274–285.

[Ber+12] Daniel J Bernstein et al. “Faster batch forgery identification”. In:
Progress in Cryptology-INDOCRYPT 2012: 13th International
Conference on Cryptology in India, Kolkata, India, December
9-12, 2012. Proceedings 13. Springer. 2012, pp. 454–473.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. “Function secret shar-
ing: Improvements and extensions”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security. 2016, pp. 1292–1303.

[Blo70] Burton H. Bloom. “Space/time trade-offs in hash coding with
allowable errors”. In: Commun. ACM 13.7 (July 1970), pp. 422–
426. issn: 0001-0782. doi: 10.1145/362686.362692. url: https:
//doi.org/10.1145/362686.362692.

[BS23] Matthias Babel and Johannes Sedlmeir. “Bringing data mini-
mization to digital wallets at scale with general-purpose zero-
knowledge proofs”. In: arXiv preprint arXiv:2301.00823 (2023).

[CDH16] Jan Camenisch, Manu Drijvers, and Jan Hajny. “Scalable Re-
vocation Scheme for Anonymous Credentials Based on n-times
Unlinkable Proofs”. In: Oct. 2016, pp. 123–133. doi: 10.1145/
2994620.2994625.

[CH10] Philippe Camacho and Alejandro Hevia. “On the impossibility
of batch update for cryptographic accumulators”. In: Progress

78

https://doi.org/10.1109/EuroSP.2017.13
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/2994620.2994625
https://doi.org/10.1145/2994620.2994625

in Cryptology–LATINCRYPT 2010: First International Confer-
ence on Cryptology and Information Security in Latin Amer-
ica, Puebla, Mexico, August 8-11, 2010, proceedings 1. Springer.
2010, pp. 178–188.

[CKS09] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. “An
accumulator based on bilinear maps and efficient revocation
for anonymous credentials”. In: Public Key Cryptography–PKC
2009: 12th International Conference on Practice and Theory in
Public Key Cryptography, Irvine, CA, USA, March 18-20, 2009.
Proceedings 12. Springer. 2009, pp. 481–500.

[CKS10] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. “Solv-
ing revocation with efficient update of anonymous credentials”.
In: International Conference on Security and Cryptography for
Networks. Springer. 2010, pp. 454–471.

[CL02] Jan Camenisch and Anna Lysyanskaya. “Dynamic accumulators
and application to efficient revocation of anonymous creden-
tials”. In: Advances in Cryptology—CRYPTO 2002: 22nd An-
nual International Cryptology Conference Santa Barbara, Cali-
fornia, USA, August 18–22, 2002 Proceedings 22. Springer. 2002,
pp. 61–76.

[CV02] Jan Camenisch and Els Van Herreweghen. “Design and imple-
mentation of the idemix anonymous credential system”. In: Pro-
ceedings of the 9th ACM Conference on Computer and Commu-
nications Security. 2002, pp. 21–30.

[DPC23] Alex Davidson, Gonçalo Pestana, and Sof́ıa Celi. “Frodopir: Sim-
ple, scalable, single-server private information retrieval”. In: Pro-
ceedings on Privacy Enhancing Technologies (2023).

[Dun22] Paul Dunphy. “A note on the blockchain trilemma for decen-
tralized identity: Learning from experiments with hyperledger
indy”. In: arXiv preprint arXiv:2204.05784 (2022).

[Eur23] European Digital Identity Wallet Consortium. EUDI Architec-
ture and Reference Framework v1.4.0. 2023. url: https://eu-
digital-identity-wallet.github.io/eudi-doc-architecture-

and-reference-framework/1.4.0/.

[FYC24] Daniel Fett, Kristina Yasuda, and Brian Campbell. Selective
Disclosure for JWTs (SD-JWT). Internet-Draft draft-ietf-oauth-
selective-disclosure-jwt-08. Work in Progress. Internet Engineer-
ing Task Force, Mar. 2024. 84 pp. url: https://datatracker.
ietf.org/doc/draft-ietf-oauth-selective-disclosure-

jwt/08/.

79

https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/
https://datatracker.ietf.org/doc/draft-ietf-oauth-selective-disclosure-jwt/08/
https://datatracker.ietf.org/doc/draft-ietf-oauth-selective-disclosure-jwt/08/
https://datatracker.ietf.org/doc/draft-ietf-oauth-selective-disclosure-jwt/08/

[GI14] Niv Gilboa and Yuval Ishai. “Distributed point functions and
their applications”. In: Advances in Cryptology–EUROCRYPT
2014: 33rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings 33. Springer. 2014, pp. 640–658.

[Hen+23] Alexandra Henzinger et al. “One Server for the Price of Two:
Simple and Fast {Single-Server} Private Information Retrieval”.
In: 32nd USENIX Security Symposium (USENIX Security 23).
2023, pp. 3889–3905.

[Hop+16] Daira Hopwood et al. “Zcash protocol specification”. In: GitHub:
San Francisco, CA, USA 4.220 (2016), p. 32.

[JLM22] Samuel Jaques, Michael Lodder, and Hart Montgomery. “AL-
LOSAUR: Accumulator with Low-Latency Oblivious Sublinear
Anonymous credential Updates with Revocations”. In: Cryptol-
ogy ePrint Archive (2022).

[KB21] Ioanna Karantaidou and Foteini Baldimtsi. “Efficient construc-
tions of pairing based accumulators”. In: 2021 IEEE 34th Com-
puter Security Foundations Symposium (CSF). IEEE. 2021, pp. 1–
16.

[KC21] Nikita Korzhitskii and Niklas Carlsson. “Revocation Statuses
on the Internet”. In: Passive and Active Measurement: 22nd In-
ternational Conference, PAM 2021, Virtual Event, March 29 –
April 1, 2021, Proceedings. Cottbus, Germany: Springer-Verlag,
2021, pp. 175–191. isbn: 978-3-030-72581-5. doi: 10.1007/978-
3-030-72582-2_11. url: https://doi.org/10.1007/978-3-
030-72582-2_11.

[KL24] Victor Youdom Kemmoe and Anna Lysyanskaya. “RSA-Based
Dynamic Accumulator without Hashing into Primes”. In: Cryp-
tology ePrint Archive (2024).

[KOR19] Daniel Kales, Olamide Omolola, and Sebastian Ramacher. “Re-
visiting user privacy for certificate transparency”. In: 2019 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE.
2019, pp. 432–447.

[Lar+17] James Larisch et al. “CRLite: A scalable system for pushing all
TLS revocations to all browsers”. In: 2017 IEEE Symposium on
Security and Privacy (SP). IEEE. 2017, pp. 539–556.

[Liu+15] Yabing Liu et al. “An end-to-end measurement of certificate re-
vocation in the web’s PKI”. In: Proceedings of the 2015 Internet
Measurement Conference. 2015, pp. 183–196.

80

https://doi.org/10.1007/978-3-030-72582-2_11
https://doi.org/10.1007/978-3-030-72582-2_11
https://doi.org/10.1007/978-3-030-72582-2_11
https://doi.org/10.1007/978-3-030-72582-2_11

[Loo+23] Tobias Looker et al. The BBS Signature Scheme. Internet-Draft
draft-irtf-cfrg-bbs-signatures-05. Work in Progress. Internet En-
gineering Task Force, Dec. 2023. 115 pp. url: https://datatracker.
ietf.org/doc/draft-irtf-cfrg-bbs-signatures/05/.

[Ngu05] Lan Nguyen. “Accumulators from bilinear pairings and appli-
cations”. In: Topics in Cryptology–CT-RSA 2005: The Cryp-
tographers’ Track at the RSA Conference 2005, San Francisco,
CA, USA, February 14-18, 2005. Proceedings. Springer. 2005,
pp. 275–292.

[Par14] European Parliament. Regulation (EU) No 910/2014 of the Eu-
ropean Parliament and of the Council of 23 July 2014 on elec-
tronic identification and trust services for electronic transactions
in the internal market and repealing Directive 1999/93/EC. https:
//eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=

CELEX:32014R0910. 2014.

[Reg09] Oded Regev. “On lattices, learning with errors, random linear
codes, and cryptography”. In: Journal of the ACM (JACM) 56.6
(2009), pp. 1–40.

[Ros+23] Michael Rosenberg et al. “zk-creds: Flexible anonymous creden-
tials from zksnarks and existing identity infrastructure”. In: 2023
IEEE Symposium on Security and Privacy (SP). IEEE. 2023,
pp. 790–808.

[Sco19] Michael Scott. “Pairing implementation revisited”. In: Cryptol-
ogy ePrint Archive (2019).

[Spo+20] Manu Sporny et al. JSON-LD 1.1. Tech. rep. W3C, July 2020.
url: https : / / www . w3 . org / TR / 2020 / REC - json - ld11 -

20200716.

[TZ23] Stefano Tessaro and Chenzhi Zhu. “Revisiting BBS signatures”.
In: Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques. Springer. 2023, pp. 691–
721.

[VB22] Giuseppe Vitto and Alex Biryukov. “Dynamic universal accu-
mulator with batch update over bilinear groups”. In: Cryptog-
raphers’ Track at the RSA Conference. Springer. 2022, pp. 395–
426.

81

https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/05/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/05/
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32014R0910
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32014R0910
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32014R0910
https://www.w3.org/TR/2020/REC-json-ld11-20200716
https://www.w3.org/TR/2020/REC-json-ld11-20200716

	Introduction
	Motivation
	Contributions

	Background
	Certificate Revocation in the PKI
	Pull-Based Approaches
	Push-Based Approaches

	Cryptographic Accumulators
	Accumulator-Based revocation
	Accumulator Definition
	Security Properties

	Revocation in the Swiss e-ID Setting
	Setting
	Entities
	Swiss e-ID Proposals
	Requirements
	Our Work

	Related Work on Privacy-Preserving Revocation
	Initial Remarks
	Notation
	Merkle Hash-Trees
	RSA accumulators
	Paring-Based accumulators

	Building a Dynamic Accumulator with Efficient Update
	Notation
	Preliminary Construction of our Accumulator Scheme
	Our Preliminary Accumulator Scheme
	Theoretical Analysis
	Software Implementation
	Limitations of the Scheme

	Adding Unlikability via ZK Proofs of Membership
	Unlikable Proofs of Memebrship
	Adding ZK Proofs of Membership
	Theoretical Analysis
	Software Implementation

	Adding Support for Batch Operations
	The update problem
	Polynomials for Batch Updates
	On Efficient Polynomial Evaluation Techniques
	Aggregating Multiple Batches
	Adding Support for Batch Updates
	Soundness of the Extended Construction
	Theoretical Analysis Evaluation
	Software Implementation

	Improving Update Scalability with Revocation Epochs
	On the Communication Overhead of Witness Updates
	Limiting Maximum Updates with Revocation Epochs
	Adding Revocation Epochs
	Theoretical Analysis
	Practical Advantages of Revocation Epochs
	Remaining Limitations

	Credential Scheme with Privacy-Preserving Revocation
	A Protocol for Binding Membership Proofs and BBS Proofs
	Setting
	Protocol Description

	Digital Credential Scheme with Accumulator-Based Revocation
	A BBS Credential Scheme with Accumulator Based Revocation
	Modular Construction for Adaptively-Sound Accumulators
	On the Adaptive Soundness of our Scheme
	On Holders Unlinkability

	Security Analysis of the Binding Protocol
	Soundness
	Zero-Knowledge

	Private Information Retrieval for Updating Witnesses
	Introduction
	Single-Server PIR Schemes
	2-Server PIR for Efficient Witness Update
	Distributed Point Functions
	2-Server PIR from DPFs
	Using 2-Server PIR for Anonymous Witness Update
	Experimental Results
	An Alternative Update Strategy

	Conclusion
	Improvements to Related Works
	Conclusions

