|
| 1 | +import os |
| 2 | + |
| 3 | +os.environ["ONEFLOW_MLIR_CSE"] = "1" |
| 4 | +os.environ["ONEFLOW_MLIR_ENABLE_INFERENCE_OPTIMIZATION"] = "1" |
| 5 | +os.environ["ONEFLOW_MLIR_ENABLE_ROUND_TRIP"] = "1" |
| 6 | +os.environ["ONEFLOW_MLIR_FUSE_FORWARD_OPS"] = "1" |
| 7 | +os.environ["ONEFLOW_MLIR_FUSE_OPS_WITH_BACKWARD_IMPL"] = "1" |
| 8 | +os.environ["ONEFLOW_MLIR_GROUP_MATMUL"] = "1" |
| 9 | +os.environ["ONEFLOW_MLIR_PREFER_NHWC"] = "1" |
| 10 | + |
| 11 | +os.environ["ONEFLOW_KERNEL_ENABLE_FUSED_CONV_BIAS"] = "1" |
| 12 | +os.environ["ONEFLOW_KERNEL_ENABLE_FUSED_LINEAR"] = "1" |
| 13 | + |
| 14 | +os.environ["ONEFLOW_KERNEL_CONV_CUTLASS_IMPL_ENABLE_TUNING_WARMUP"] = "1" |
| 15 | +os.environ["ONEFLOW_KERNEL_CONV_ENABLE_CUTLASS_IMPL"] = "1" |
| 16 | + |
| 17 | +os.environ["ONEFLOW_CONV_ALLOW_HALF_PRECISION_ACCUMULATION"] = "1" |
| 18 | +os.environ["ONEFLOW_MATMUL_ALLOW_HALF_PRECISION_ACCUMULATION"] = "1" |
| 19 | + |
| 20 | +os.environ["ONEFLOW_LINEAR_EMBEDDING_SKIP_INIT"] = "1" |
| 21 | + |
| 22 | +import click |
| 23 | +import oneflow as flow |
| 24 | +from tqdm import tqdm |
| 25 | + |
| 26 | + |
| 27 | +def mock_wrapper(f): |
| 28 | + import sys |
| 29 | + |
| 30 | + flow.mock_torch.enable(lazy=True) |
| 31 | + ret = f() |
| 32 | + flow.mock_torch.disable() |
| 33 | + # TODO: this trick of py mod purging will be removed |
| 34 | + tmp = sys.modules.copy() |
| 35 | + for x in tmp: |
| 36 | + if x.startswith("diffusers"): |
| 37 | + del sys.modules[x] |
| 38 | + return ret |
| 39 | + |
| 40 | + |
| 41 | +class UNetGraph(flow.nn.Graph): |
| 42 | + def __init__(self, unet): |
| 43 | + super().__init__() |
| 44 | + self.unet = unet |
| 45 | + self.config.enable_cudnn_conv_heuristic_search_algo(False) |
| 46 | + self.config.allow_fuse_add_to_output(True) |
| 47 | + |
| 48 | + def build(self, latent_model_input, t, text_embeddings): |
| 49 | + text_embeddings = flow._C.amp_white_identity(text_embeddings) |
| 50 | + return self.unet( |
| 51 | + latent_model_input, t, encoder_hidden_states=text_embeddings |
| 52 | + ).sample |
| 53 | + |
| 54 | + |
| 55 | +def get_graph(token): |
| 56 | + from diffusers import UNet2DConditionModel |
| 57 | + |
| 58 | + with flow.no_grad(): |
| 59 | + unet = UNet2DConditionModel.from_pretrained( |
| 60 | + "runwayml/stable-diffusion-v1-5", |
| 61 | + use_auth_token=token, |
| 62 | + revision="fp16", |
| 63 | + torch_dtype=flow.float16, |
| 64 | + subfolder="unet", |
| 65 | + ) |
| 66 | + unet = unet.to("cuda") |
| 67 | + return UNetGraph(unet) |
| 68 | + |
| 69 | + |
| 70 | +@click.command() |
| 71 | +@click.option("--token") |
| 72 | +@click.option("--repeat", default=1000) |
| 73 | +@click.option("--sync_interval", default=50) |
| 74 | +def benchmark(token, repeat, sync_interval): |
| 75 | + # create a mocked unet graph |
| 76 | + unet_graph = mock_wrapper(lambda: get_graph(token)) |
| 77 | + |
| 78 | + # generate inputs with torch |
| 79 | + from diffusers.utils import floats_tensor |
| 80 | + import torch |
| 81 | + |
| 82 | + batch_size = 2 |
| 83 | + num_channels = 4 |
| 84 | + sizes = (64, 64) |
| 85 | + noise = ( |
| 86 | + floats_tensor((batch_size, num_channels) + sizes).to("cuda").to(torch.float16) |
| 87 | + ) |
| 88 | + print(f"{type(noise)=}") |
| 89 | + time_step = torch.tensor([10]).to("cuda") |
| 90 | + encoder_hidden_states = ( |
| 91 | + floats_tensor((batch_size, 77, 768)).to("cuda").to(torch.float16) |
| 92 | + ) |
| 93 | + |
| 94 | + # convert to oneflow tensors |
| 95 | + [noise, time_step, encoder_hidden_states] = [ |
| 96 | + flow.utils.tensor.from_torch(x) |
| 97 | + for x in [noise, time_step, encoder_hidden_states] |
| 98 | + ] |
| 99 | + unet_graph(noise, time_step, encoder_hidden_states) |
| 100 | + |
| 101 | + flow._oneflow_internal.eager.Sync() |
| 102 | + import time |
| 103 | + |
| 104 | + t0 = time.time() |
| 105 | + for r in tqdm(range(repeat)): |
| 106 | + out = unet_graph(noise, time_step, encoder_hidden_states) |
| 107 | + # convert to torch tensors |
| 108 | + out = flow.utils.tensor.to_torch(out) |
| 109 | + if r == repeat - 1 or r % sync_interval == 0: |
| 110 | + flow._oneflow_internal.eager.Sync() |
| 111 | + print(f"{type(out)=}") |
| 112 | + t1 = time.time() |
| 113 | + duration = t1 - t0 |
| 114 | + throughput = repeat / duration |
| 115 | + print( |
| 116 | + f"Finish {repeat} steps in {duration:.3f} seconds, average {throughput:.2f}it/s" |
| 117 | + ) |
| 118 | + |
| 119 | + |
| 120 | +if __name__ == "__main__": |
| 121 | + print(f"{flow.__path__=}") |
| 122 | + print(f"{flow.__version__=}") |
| 123 | + benchmark() |
0 commit comments