Skip to content

Commit a60c821

Browse files
committed
[B] Move FiniteTypes.finite_couple to Finite_sets
This ensures that `FiniteTypes.v` contains only lemmas & theorems concerning `FiniteT`. Use `Finite_sets.finite_couple` instead now.
1 parent bd08c83 commit a60c821

File tree

3 files changed

+11
-11
lines changed

3 files changed

+11
-11
lines changed

theories/ZornsLemma/CountableTypes.v

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@ From Coq Require Export Relation_Definitions QArith ZArith.
22
From Coq Require Import Arith ArithRing FunctionalExtensionality
33
Program.Subset ClassicalChoice.
44
From ZornsLemma Require Import InfiniteTypes CSB DecidableDec
5-
DependentTypeChoice.
5+
DependentTypeChoice Finite_sets.
66
From ZornsLemma Require Export FiniteTypes IndexedFamilies.
77

88
Local Close Scope Q_scope.

theories/ZornsLemma/FiniteTypes.v

Lines changed: 0 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -979,11 +979,3 @@ Proof.
979979
+ intros. destruct x as [[]|]; intuition.
980980
+ intros. destruct y as [|]; intuition.
981981
Qed.
982-
983-
Lemma finite_couple {X} (x y : X) :
984-
Finite (Couple x y).
985-
Proof.
986-
rewrite <- Couple_as_union.
987-
apply Union_preserves_Finite.
988-
all: apply Singleton_is_finite.
989-
Qed.

theories/ZornsLemma/Finite_sets.v

Lines changed: 10 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,14 @@
11
From Coq Require Import Classical.
2-
From Coq Require Export Finite_sets.
3-
From ZornsLemma Require Import EnsemblesImplicit FiniteImplicit.
2+
From Coq Require Export Finite_sets Finite_sets_facts.
3+
From ZornsLemma Require Import EnsemblesImplicit FiniteImplicit Powerset_facts.
4+
5+
Lemma finite_couple {X} (x y : X) :
6+
Finite (Couple x y).
7+
Proof.
8+
rewrite <- Couple_as_union.
9+
apply Union_preserves_Finite.
10+
all: apply Singleton_is_finite.
11+
Qed.
412

513
(* This is like a choice property for finite sets. And [P] is about pairs, so
614
that's the meaning of the name. It is similar to

0 commit comments

Comments
 (0)