|
25 | 25 | import pandas.util._test_decorators as td |
26 | 26 |
|
27 | 27 |
|
| 28 | + def _check_stat_op(self, name, alternative, main_frame, float_frame, |
| 29 | + float_string_frame, has_skipna=True, |
| 30 | + has_numeric_only=False, check_dtype=True, |
| 31 | + check_dates=False, check_less_precise=False, |
| 32 | + skipna_alternative=None): |
| 33 | + |
| 34 | + f = getattr(main_frame, name) |
| 35 | + |
| 36 | + if check_dates: |
| 37 | + df = DataFrame({'b': date_range('1/1/2001', periods=2)}) |
| 38 | + _f = getattr(df, name) |
| 39 | + result = _f() |
| 40 | + assert isinstance(result, Series) |
| 41 | + |
| 42 | + df['a'] = lrange(len(df)) |
| 43 | + result = getattr(df, name)() |
| 44 | + assert isinstance(result, Series) |
| 45 | + assert len(result) |
| 46 | + |
| 47 | + if has_skipna: |
| 48 | + def wrapper(x): |
| 49 | + return alternative(x.values) |
| 50 | + |
| 51 | + skipna_wrapper = tm._make_skipna_wrapper(alternative, |
| 52 | + skipna_alternative) |
| 53 | + result0 = f(axis=0, skipna=False) |
| 54 | + result1 = f(axis=1, skipna=False) |
| 55 | + tm.assert_series_equal(result0, main_frame.apply(wrapper), |
| 56 | + check_dtype=check_dtype, |
| 57 | + check_less_precise=check_less_precise) |
| 58 | + # HACK: win32 |
| 59 | + tm.assert_series_equal(result1, main_frame.apply(wrapper, axis=1), |
| 60 | + check_dtype=False, |
| 61 | + check_less_precise=check_less_precise) |
| 62 | + else: |
| 63 | + skipna_wrapper = alternative |
| 64 | + |
| 65 | + result0 = f(axis=0) |
| 66 | + result1 = f(axis=1) |
| 67 | + tm.assert_series_equal(result0, main_frame.apply(skipna_wrapper), |
| 68 | + check_dtype=check_dtype, |
| 69 | + check_less_precise=check_less_precise) |
| 70 | + if name in ['sum', 'prod']: |
| 71 | + expected = main_frame.apply(skipna_wrapper, axis=1) |
| 72 | + tm.assert_series_equal(result1, expected, check_dtype=False, |
| 73 | + check_less_precise=check_less_precise) |
| 74 | + |
| 75 | + # check dtypes |
| 76 | + if check_dtype: |
| 77 | + lcd_dtype = main_frame.values.dtype |
| 78 | + assert lcd_dtype == result0.dtype |
| 79 | + assert lcd_dtype == result1.dtype |
| 80 | + |
| 81 | + # bad axis |
| 82 | + tm.assert_raises_regex(ValueError, 'No axis named 2', f, axis=2) |
| 83 | + # make sure works on mixed-type frame |
| 84 | + getattr(float_string_frame, name)(axis=0) |
| 85 | + getattr(float_string_frame, name)(axis=1) |
| 86 | + |
| 87 | + if has_numeric_only: |
| 88 | + getattr(float_string_frame, name)(axis=0, numeric_only=True) |
| 89 | + getattr(float_string_frame, name)(axis=1, numeric_only=True) |
| 90 | + getattr(float_frame, name)(axis=0, numeric_only=False) |
| 91 | + getattr(float_frame, name)(axis=1, numeric_only=False) |
| 92 | + |
| 93 | + # all NA case |
| 94 | + if has_skipna: |
| 95 | + all_na = float_frame * np.NaN |
| 96 | + r0 = getattr(all_na, name)(axis=0) |
| 97 | + r1 = getattr(all_na, name)(axis=1) |
| 98 | + if name in ['sum', 'prod']: |
| 99 | + unit = int(name == 'prod') |
| 100 | + expected = pd.Series(unit, index=r0.index, dtype=r0.dtype) |
| 101 | + tm.assert_series_equal(r0, expected) |
| 102 | + expected = pd.Series(unit, index=r1.index, dtype=r1.dtype) |
| 103 | + tm.assert_series_equal(r1, expected) |
| 104 | + |
| 105 | + |
| 106 | + def _check_bool_op(self, name, alternative, frame, float_string_frame, |
| 107 | + has_skipna=True, has_bool_only=False): |
| 108 | + |
| 109 | + f = getattr(frame, name) |
| 110 | + |
| 111 | + if has_skipna: |
| 112 | + def skipna_wrapper(x): |
| 113 | + nona = x.dropna().values |
| 114 | + return alternative(nona) |
| 115 | + |
| 116 | + def wrapper(x): |
| 117 | + return alternative(x.values) |
| 118 | + |
| 119 | + result0 = f(axis=0, skipna=False) |
| 120 | + result1 = f(axis=1, skipna=False) |
| 121 | + tm.assert_series_equal(result0, frame.apply(wrapper)) |
| 122 | + tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), |
| 123 | + check_dtype=False) # HACK: win32 |
| 124 | + else: |
| 125 | + skipna_wrapper = alternative |
| 126 | + wrapper = alternative |
| 127 | + |
| 128 | + result0 = f(axis=0) |
| 129 | + result1 = f(axis=1) |
| 130 | + tm.assert_series_equal(result0, frame.apply(skipna_wrapper)) |
| 131 | + tm.assert_series_equal(result1, frame.apply(skipna_wrapper, axis=1), |
| 132 | + check_dtype=False) |
| 133 | + |
| 134 | + # bad axis |
| 135 | + pytest.raises(ValueError, f, axis=2) |
| 136 | + |
| 137 | + # make sure works on mixed-type frame |
| 138 | + mixed = float_string_frame |
| 139 | + mixed['_bool_'] = np.random.randn(len(mixed)) > 0 |
| 140 | + getattr(mixed, name)(axis=0) |
| 141 | + getattr(mixed, name)(axis=1) |
| 142 | + |
| 143 | + class NonzeroFail(object): |
| 144 | + |
| 145 | + def __nonzero__(self): |
| 146 | + raise ValueError |
| 147 | + |
| 148 | + mixed['_nonzero_fail_'] = NonzeroFail() |
| 149 | + |
| 150 | + if has_bool_only: |
| 151 | + getattr(mixed, name)(axis=0, bool_only=True) |
| 152 | + getattr(mixed, name)(axis=1, bool_only=True) |
| 153 | + getattr(frame, name)(axis=0, bool_only=False) |
| 154 | + getattr(frame, name)(axis=1, bool_only=False) |
| 155 | + |
| 156 | + # all NA case |
| 157 | + if has_skipna: |
| 158 | + all_na = frame * np.NaN |
| 159 | + r0 = getattr(all_na, name)(axis=0) |
| 160 | + r1 = getattr(all_na, name)(axis=1) |
| 161 | + if name == 'any': |
| 162 | + assert not r0.any() |
| 163 | + assert not r1.any() |
| 164 | + else: |
| 165 | + assert r0.all() |
| 166 | + assert r1.all() |
| 167 | + |
| 168 | + |
28 | 169 | class TestDataFrameAnalytics(): |
29 | 170 |
|
30 | 171 | # ---------------------------------------------------------------------= |
@@ -803,83 +944,6 @@ def alt(x): |
803 | 944 | assert kurt.name is None |
804 | 945 | assert kurt2.name == 'bar' |
805 | 946 |
|
806 | | - def _check_stat_op(self, name, alternative, main_frame, float_frame, |
807 | | - float_string_frame, has_skipna=True, |
808 | | - has_numeric_only=False, check_dtype=True, |
809 | | - check_dates=False, check_less_precise=False, |
810 | | - skipna_alternative=None): |
811 | | - |
812 | | - f = getattr(main_frame, name) |
813 | | - |
814 | | - if check_dates: |
815 | | - df = DataFrame({'b': date_range('1/1/2001', periods=2)}) |
816 | | - _f = getattr(df, name) |
817 | | - result = _f() |
818 | | - assert isinstance(result, Series) |
819 | | - |
820 | | - df['a'] = lrange(len(df)) |
821 | | - result = getattr(df, name)() |
822 | | - assert isinstance(result, Series) |
823 | | - assert len(result) |
824 | | - |
825 | | - if has_skipna: |
826 | | - def wrapper(x): |
827 | | - return alternative(x.values) |
828 | | - |
829 | | - skipna_wrapper = tm._make_skipna_wrapper(alternative, |
830 | | - skipna_alternative) |
831 | | - result0 = f(axis=0, skipna=False) |
832 | | - result1 = f(axis=1, skipna=False) |
833 | | - tm.assert_series_equal(result0, main_frame.apply(wrapper), |
834 | | - check_dtype=check_dtype, |
835 | | - check_less_precise=check_less_precise) |
836 | | - # HACK: win32 |
837 | | - tm.assert_series_equal(result1, main_frame.apply(wrapper, axis=1), |
838 | | - check_dtype=False, |
839 | | - check_less_precise=check_less_precise) |
840 | | - else: |
841 | | - skipna_wrapper = alternative |
842 | | - |
843 | | - result0 = f(axis=0) |
844 | | - result1 = f(axis=1) |
845 | | - tm.assert_series_equal(result0, main_frame.apply(skipna_wrapper), |
846 | | - check_dtype=check_dtype, |
847 | | - check_less_precise=check_less_precise) |
848 | | - if name in ['sum', 'prod']: |
849 | | - expected = main_frame.apply(skipna_wrapper, axis=1) |
850 | | - tm.assert_series_equal(result1, expected, check_dtype=False, |
851 | | - check_less_precise=check_less_precise) |
852 | | - |
853 | | - # check dtypes |
854 | | - if check_dtype: |
855 | | - lcd_dtype = main_frame.values.dtype |
856 | | - assert lcd_dtype == result0.dtype |
857 | | - assert lcd_dtype == result1.dtype |
858 | | - |
859 | | - # bad axis |
860 | | - tm.assert_raises_regex(ValueError, 'No axis named 2', f, axis=2) |
861 | | - # make sure works on mixed-type frame |
862 | | - getattr(float_string_frame, name)(axis=0) |
863 | | - getattr(float_string_frame, name)(axis=1) |
864 | | - |
865 | | - if has_numeric_only: |
866 | | - getattr(float_string_frame, name)(axis=0, numeric_only=True) |
867 | | - getattr(float_string_frame, name)(axis=1, numeric_only=True) |
868 | | - getattr(float_frame, name)(axis=0, numeric_only=False) |
869 | | - getattr(float_frame, name)(axis=1, numeric_only=False) |
870 | | - |
871 | | - # all NA case |
872 | | - if has_skipna: |
873 | | - all_na = float_frame * np.NaN |
874 | | - r0 = getattr(all_na, name)(axis=0) |
875 | | - r1 = getattr(all_na, name)(axis=1) |
876 | | - if name in ['sum', 'prod']: |
877 | | - unit = int(name == 'prod') |
878 | | - expected = pd.Series(unit, index=r0.index, dtype=r0.dtype) |
879 | | - tm.assert_series_equal(r0, expected) |
880 | | - expected = pd.Series(unit, index=r1.index, dtype=r1.dtype) |
881 | | - tm.assert_series_equal(r1, expected) |
882 | | - |
883 | 947 | @pytest.mark.parametrize("dropna, expected", [ |
884 | 948 | (True, {'A': [12], |
885 | 949 | 'B': [10.0], |
@@ -1336,68 +1400,6 @@ def test_any_all_level_axis_none_raises(self, method): |
1336 | 1400 | with tm.assert_raises_regex(ValueError, xpr): |
1337 | 1401 | getattr(df, method)(axis=None, level='out') |
1338 | 1402 |
|
1339 | | - def _check_bool_op(self, name, alternative, frame, float_string_frame, |
1340 | | - has_skipna=True, has_bool_only=False): |
1341 | | - |
1342 | | - f = getattr(frame, name) |
1343 | | - |
1344 | | - if has_skipna: |
1345 | | - def skipna_wrapper(x): |
1346 | | - nona = x.dropna().values |
1347 | | - return alternative(nona) |
1348 | | - |
1349 | | - def wrapper(x): |
1350 | | - return alternative(x.values) |
1351 | | - |
1352 | | - result0 = f(axis=0, skipna=False) |
1353 | | - result1 = f(axis=1, skipna=False) |
1354 | | - tm.assert_series_equal(result0, frame.apply(wrapper)) |
1355 | | - tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), |
1356 | | - check_dtype=False) # HACK: win32 |
1357 | | - else: |
1358 | | - skipna_wrapper = alternative |
1359 | | - wrapper = alternative |
1360 | | - |
1361 | | - result0 = f(axis=0) |
1362 | | - result1 = f(axis=1) |
1363 | | - tm.assert_series_equal(result0, frame.apply(skipna_wrapper)) |
1364 | | - tm.assert_series_equal(result1, frame.apply(skipna_wrapper, axis=1), |
1365 | | - check_dtype=False) |
1366 | | - |
1367 | | - # bad axis |
1368 | | - pytest.raises(ValueError, f, axis=2) |
1369 | | - |
1370 | | - # make sure works on mixed-type frame |
1371 | | - mixed = float_string_frame |
1372 | | - mixed['_bool_'] = np.random.randn(len(mixed)) > 0 |
1373 | | - getattr(mixed, name)(axis=0) |
1374 | | - getattr(mixed, name)(axis=1) |
1375 | | - |
1376 | | - class NonzeroFail(object): |
1377 | | - |
1378 | | - def __nonzero__(self): |
1379 | | - raise ValueError |
1380 | | - |
1381 | | - mixed['_nonzero_fail_'] = NonzeroFail() |
1382 | | - |
1383 | | - if has_bool_only: |
1384 | | - getattr(mixed, name)(axis=0, bool_only=True) |
1385 | | - getattr(mixed, name)(axis=1, bool_only=True) |
1386 | | - getattr(frame, name)(axis=0, bool_only=False) |
1387 | | - getattr(frame, name)(axis=1, bool_only=False) |
1388 | | - |
1389 | | - # all NA case |
1390 | | - if has_skipna: |
1391 | | - all_na = frame * np.NaN |
1392 | | - r0 = getattr(all_na, name)(axis=0) |
1393 | | - r1 = getattr(all_na, name)(axis=1) |
1394 | | - if name == 'any': |
1395 | | - assert not r0.any() |
1396 | | - assert not r1.any() |
1397 | | - else: |
1398 | | - assert r0.all() |
1399 | | - assert r1.all() |
1400 | | - |
1401 | 1403 | # ---------------------------------------------------------------------- |
1402 | 1404 | # Isin |
1403 | 1405 |
|
|
0 commit comments