@@ -91,16 +91,19 @@ def test_variable_property(prop):
91
91
(do ('conj' ), True ),
92
92
(do ('copy' ), True ),
93
93
(do ('count' ), False ),
94
- (do ('fillna' , 0 ), True ),
94
+ param (do ('fillna' , 0 ), True ,
95
+ marks = xfail (reason = 'Missing implementation for np.result_type' )),
95
96
(do ('get_axis_num' , dim = 'x' ), False ),
96
97
(do ('isel' , x = slice (2 , 4 )), True ),
97
98
(do ('isnull' ), True ),
98
- (do ('prod' ), False ),
99
+ param (do ('prod' ), False ,
100
+ marks = xfail (reason = 'Missing implementation for np.result_type' )),
99
101
(do ('roll' ), True ),
100
102
(do ('round' ), True ),
101
103
(do ('set_dims' , dims = ('x' , 'y' , 'z' )), True ),
102
104
(do ('stack' , dimensions = {'flat' : ('x' , 'y' )}), True ),
103
- (do ('sum' ), False ),
105
+ param (do ('sum' ), False ,
106
+ marks = xfail (reason = 'Missing implementation for np.result_type' )),
104
107
(do ('to_base_variable' ), True ),
105
108
(do ('transpose' ), True ),
106
109
(do ('unstack' , dimensions = {'x' : {'x1' : 5 , 'x2' : 2 }}), True ),
@@ -240,6 +243,7 @@ def test_pickle(self):
240
243
v2 = pickle .loads (pickle .dumps (v1 ))
241
244
assert_sparse_eq (v1 .data , v2 .data )
242
245
246
+ @pytest .mark .xfail (reason = "Missing implementation for np.result_type" )
243
247
def test_missing_values (self ):
244
248
a = np .array ([0 , 1 , np .nan , 3 ])
245
249
s = COO .from_numpy (a )
@@ -290,7 +294,8 @@ def test_dataarray_property(prop):
290
294
(do ('diff' , 'x' ), True ),
291
295
(do ('drop' , 'x' ), True ),
292
296
(do ('expand_dims' , {'z' : 2 }, axis = 2 ), True ),
293
- (do ('fillna' , 0 ), True ),
297
+ param (do ('fillna' , 0 ), True ,
298
+ marks = xfail (reason = 'Missing implementation for np.result_type' )),
294
299
(do ('get_axis_num' , 'x' ), False ),
295
300
(do ('get_index' , 'x' ), False ),
296
301
# (do('groupby'), False),
@@ -300,15 +305,18 @@ def test_dataarray_property(prop):
300
305
(do ('isel' , {'x' : slice (0 , 3 ), 'y' : slice (2 , 4 )}), True ),
301
306
# (do('isel_points'), False),
302
307
(do ('isnull' ), True ),
303
- (do ('pipe' , np .sum , axis = 1 ), True ),
304
- (do ('prod' ), False ),
308
+ param (do ('pipe' , np .sum , axis = 1 ), True ,
309
+ marks = xfail (reason = 'Missing implementation for np.result_type' )),
310
+ param (do ('prod' ), False ,
311
+ marks = xfail (reason = 'Missing implementation for np.result_type' )),
305
312
(do ('reindex' , {'x' : [1 , 2 , 3 ]}), True ),
306
313
(do ('rename' , 'foo' ), True ),
307
314
(do ('reorder_levels' ), True ),
308
315
# (do('resample'), False),
309
316
(do ('reset_coords' , drop = True ), True ),
310
317
(do ('reset_index' , 'x' ), True ),
311
- (do ('roll' , x = 2 ), True ),
318
+ param (do ('roll' , x = 2 ), True ,
319
+ marks = xfail (reason = 'Missing implementation for np.result_type' )),
312
320
# (do('rolling'), False),
313
321
# (do('rolling_exp'), False),
314
322
(do ('round' ), True ),
@@ -318,7 +326,8 @@ def test_dataarray_property(prop):
318
326
(do ('shift' ), True ),
319
327
# (do('sortby'), False),
320
328
(do ('stack' , z = {'x' , 'y' }), True ),
321
- (do ('sum' ), False ),
329
+ param (do ('sum' ), False ,
330
+ marks = xfail (reason = 'Missing implementation for np.result_type' )),
322
331
# (do('swap_dims'), True),
323
332
(do ('transpose' ), True ),
324
333
param (do ('argmax' ), True ,
@@ -447,6 +456,7 @@ def setUp(self):
447
456
self .ds_xr = xr .DataArray (self .ds_ar , coords = {'x' : range (4 )},
448
457
dims = ('x' , 'y' ), name = 'foo' )
449
458
459
+ @pytest .mark .xfail (reason = 'Missing implementation for np.result_type' )
450
460
def test_to_dataset_roundtrip (self ):
451
461
x = self .sp_xr
452
462
assert_equal (x , x .to_dataset ('x' ).to_array ('x' ))
@@ -502,6 +512,7 @@ def test_align_outer(self):
502
512
assert np .all (a2 .coords ['x' ].data == ['a' , 'b' , 'c' , 'd' ])
503
513
assert np .all (b2 .coords ['x' ].data == ['a' , 'b' , 'c' , 'd' ])
504
514
515
+ @pytest .mark .xfail (reason = 'Missing implementation for np.result_type' )
505
516
def test_concat (self ):
506
517
ds1 = xr .Dataset (data_vars = {'d' : self .sp_xr })
507
518
ds2 = xr .Dataset (data_vars = {'d' : self .sp_xr })
0 commit comments