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Avail - Introduction

▶ Modular blockchain focused on
data availability [tx ordering,
publication]

▶ Data and execution agnostic - any
environment [EVM, WASM, etc]

▶ Zero knowledge and optimistic
rollups, validiums



Avail - Introduction

▶ Substrate based full nodes
▶ Thin light client (LC) used for data

availability sampling (DAS)
▶ Rust libp2p LC networking
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Erasure Coding

Figure: Erasure coding



Erasure Coding

▶ Proposers split each block into M × N matrix

▶ Each cell is 32 bytes long [req for BLS381]
▶ Original matrix erasure coded into 2M × N size matrix -

column size doubled
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Figure: Avail base layer



▶ KZG commitments are generated for each row, placed in the
block header

▶ Validators recreate the commitments and ensure they are
correct
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Data Availability Sampling

Figure: Light client network



Data Availability Sampling

▶ DAS - performed on every block by LCs

▶ A number of random cells are retrieved
▶ Data is verified against the commitments from headers
▶ And block confidence is thus calculated
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Logic Separation

▶ Nodes generate proofs for the requested cells
▶ Cell size: 80 bytes [ 32 bytes padded data + 48 bytes proof ]
▶ Light Client logic is separated:

1. Light Client - responsible for DAS
2. App Client - reconstructs the data for a given app ID
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From IPFS to KAD

▶ Initial architecture used
IPFS

▶ Entire blocks were delivered
to P2P network

▶ Cells were encoded into
columns, and columns into
blocks [IPLD]

▶ This approach proved to be
inefficient for random
sampling and too rigid for
individual cell retrieval

▶ Obvious optimization was
replacing IPFS with KAD -
remove unnecessary
intermediate step

▶ Network traffic decreased -
needed cells could be
pinpointed and downloaded

▶ In-memory store decreased -
not holding entire columns
just for few needed cells
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DAS on Light Client

(1) Receive block header from the node
(2) Calculate the number of random cells needed for block

confidence threshold
(3) Randomly generate individual cell positions in the block matrix
(4) Try to retrieve cells from KAD
(5) If (4) fails, retrieve the delta via RPC call to Nodes
(6) Calculate block confidence and compare against threshold
(7) If (6) passed check, upload the delta downloaded via RPC to

KAD
(8) Signal the App Client that the block has been verified
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Application Clients

▶ All apps are assigned a uniqueID
▶ App clients reconstruct app data - retrieve more data than LCs
▶ Row wise stored data is verified by commitment equality
▶ If commitments check out - clients proceed with data

reconstruction
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App Client Data Retrieval Steps

(a) Try to retrieve all the relevant rows from KAD
(b) If (a) fails, try to retrieve missing rows from Nodes
(c) If (b) fails, try to retrieve all the individual cells of those rows

from KAD
(d) If (c) fails, try to retrieve >50% of needed cells (column wise)

from KAD - enough for erasure coded data to be restored
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Implementation challenges

▶ Light clients need to prioritize KAD instead of node network
▶ Internal stress testing revealed some interesting findings

regarding at-scale Kademlia use
▶ The main challenge is delivering all of the cells into DHT in

under the block time
▶ Huge number of very small data chunks create CPU strain

just from handling stream multiplexing and connections
▶ Fine tuning Kademlia parameters can further optimize the

network for specific use case
▶ Reducing replication factor speeds up cell delivery
▶ Raising max record size to 8kb had no apparent performance

penalties
▶ Huge memory consumption with default memory allocator

(small heap chunks never deallocated)
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Optimizations and future development

▶ Switch from TCP to QUIC yielded some net positive results
▶ Replacing default Rust allocator for jemalloc allowed for a

smaller memory footprint
▶ Introducing polynomial multiproofs

▶ Polynomial commitment scheme that allows for efficiently
creating/verifying opening proofs for multiple polynomials at
multiple points

▶ Allows for grid coalescing - faster, more secure system and far
greater throughput
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Thanks!

@prabalbanerjee
Avail

https://twitter.com/prabalbanerjee
https://availproject.org/
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