@@ -65,8 +65,6 @@ @InProceedings{ AngdinataXu23
65
65
tags = { formalization, lean3}
66
66
}
67
67
68
- # To normalize:
69
- # bibtool --preserve.key.case=on --preserve.keys=on --pass.comments=on --print.use.tab=off -s -i lean.bib -o lean.bib
70
68
@InProceedings { Asgeirsson24 ,
71
69
author = { Asgeirsson, Dagur} ,
72
70
title = { {Towards Solid Abelian Groups: A Formal Proof of
@@ -257,6 +255,28 @@ @InProceedings{ BasoldBruinLawson24
257
255
tags = { formalization, lean4}
258
256
}
259
257
258
+ @Article { BBRBvY25 ,
259
+ title = { A complete formalization of Fermat's Last Theorem for
260
+ regular primes in Lean} ,
261
+ author = { Riccardo Brasca and Christopher Birkbeck and Eric
262
+ Rodriguez Boidi and Alex Best and Ruben van De Velde and
263
+ Andrew Yang} ,
264
+ url = { https://afm.episciences.org/14586} ,
265
+ doi = { 10.46298/afm.14586} ,
266
+ journal = { Annals of Formalized Mathematics} ,
267
+ volume = { Volume 1} ,
268
+ eid = 4 ,
269
+ year = { 2025} ,
270
+ month = { Jul} ,
271
+ keywords = { Lean, Mathlib, Kummer's lemma, [MATH.MATH-NT]Mathematics
272
+ [math]/Number Theory [math.NT], [INFO.INFO-LO]Computer
273
+ Science [cs]/Logic in Computer Science [cs.LO],
274
+ [INFO.INFO-FL]Computer Science [cs]/Formal Languages and
275
+ Automata Theory [cs.FL]} ,
276
+ language = { English} ,
277
+ tags = { formalization, lean4}
278
+ }
279
+
260
280
@Booklet { Best2021 ,
261
281
author = { Alexander Best} ,
262
282
title = { Automatically Generalizing Theorems Using Typeclasses} ,
@@ -1169,6 +1189,21 @@ @InProceedings{ Livingston23
1169
1189
tags = { formalization, lean3}
1170
1190
}
1171
1191
1192
+ @Article { LS25 ,
1193
+ title = { Formalizing zeta and {L}-functions in Lean} ,
1194
+ author = { David Loeffler and Michael Stoll} ,
1195
+ url = { https://afm.episciences.org/15328} ,
1196
+ doi = { 10.46298/afm.15328} ,
1197
+ journal = { Annals of Formalized Mathematics} ,
1198
+ volume = { Volume 1} ,
1199
+ eid = 2 ,
1200
+ year = { 2025} ,
1201
+ month = { Jul} ,
1202
+ keywords = { Number Theory, Formal Languages and Automata Theory, Logic
1203
+ in Computer Science} ,
1204
+ tags = { formalization, lean4}
1205
+ }
1206
+
1172
1207
@Article { Madelaine19 ,
1173
1208
author = { Paul{-}Nicolas Madelaine} ,
1174
1209
title = { Arithmetic and Casting in Lean} ,
@@ -1257,6 +1292,20 @@ @InProceedings{ Mehta23
1257
1292
bibsource = { dblp computer science bibliography, https://dblp.org}
1258
1293
}
1259
1294
1295
+ @Article { Merc25 ,
1296
+ title = { Formalising the local compactness of the adele ring} ,
1297
+ author = { Salvatore Mercuri} ,
1298
+ url = { https://afm.episciences.org/14840} ,
1299
+ doi = { 10.46298/afm.14840} ,
1300
+ journal = { Annals of Formalized Mathematics} ,
1301
+ volume = { Volume 1} ,
1302
+ eid = 5 ,
1303
+ year = { 2025} ,
1304
+ month = { Jul} ,
1305
+ keywords = { Logic in Computer Science, Number Theory} ,
1306
+ tags = { formalization, lean4}
1307
+ }
1308
+
1260
1309
@InProceedings { Nash23 ,
1261
1310
author = { Nash, Oliver} ,
1262
1311
title = { {A Formalisation of Gallagher’s Ergodic Theorem}} ,
@@ -1441,6 +1490,25 @@ @Article{ PorncharoenwasePombrioTorlak2023
1441
1490
tags = { formalization, lean4}
1442
1491
}
1443
1492
1493
+ @Article { Riou25 ,
1494
+ title = { Formalization of derived categories in {L}ean/mathlib} ,
1495
+ author = { Joël Riou} ,
1496
+ url = { https://afm.episciences.org/13609} ,
1497
+ doi = { 10.46298/afm.13609} ,
1498
+ journal = { Annals of Formalized Mathematics} ,
1499
+ volume = { Volume 1} ,
1500
+ eid = 1 ,
1501
+ year = { 2025} ,
1502
+ month = { Jul} ,
1503
+ keywords = { Derived category, Homological algebra, Spectral sequence,
1504
+ MSC 2020: 18G80, 18G15, 18G40, 18E35, 68V20,
1505
+ [MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT],
1506
+ [INFO.INFO-LO]Computer Science [cs]/Logic in Computer
1507
+ Science [cs.LO]} ,
1508
+ language = { English} ,
1509
+ tags = { formalization, lean4}
1510
+ }
1511
+
1444
1512
@Article { SelsamDeMoura16 ,
1445
1513
author = { Daniel Selsam and Leonardo {de Moura}} ,
1446
1514
title = { Congruence Closure in Intensional Type Theory} ,
0 commit comments