Skip to content

Commit f0a76c8

Browse files
committed
Finish setup/installation documentation
1 parent 02a1ea2 commit f0a76c8

File tree

1 file changed

+27
-3
lines changed

1 file changed

+27
-3
lines changed

TabularRL.jl/examples/defining_tabular_mdps.jl

Lines changed: 27 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -66,7 +66,7 @@ julia> using TabularRL
6666

6767
# ╔═╡ 761318f2-095b-4e3f-a320-061e9f50f166
6868
md"""
69-
## Automatic Setup in Notebooks
69+
## Automatic Setup with Pluto Notebooks
7070
7171
Alternatively, you can clone the entire reinforcement learning exercise repository and have access to every notebook and package contained therein. Check to see if you have `git` installed on your computer with `git --version`. If you receive an error message or do not see a version number then [install git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git).
7272
@@ -103,19 +103,39 @@ However, note that the secret and port number may differ on your system. The UR
103103

104104
# ╔═╡ 1519dfbc-e593-4f1e-9b09-9af8157b04b8
105105
md"""
106-
![](pluto_welcome.png)
106+
![pluto_welcome](https://raw.githubusercontent.com/jekyllstein/Reinforcement-Learning-Sutton-Barto-Exercise-Solutions/02a1ea29b5cf9e8ce783d23dadcb3f33995e48c9/TabularRL.jl/examples/pluto_welcome.jpeg)
107107
"""
108108

109109
# ╔═╡ 418687b7-73f4-476d-8eeb-9791830f44e3
110110
md"""
111111
If you click in the text box under `Open a notebook` a navigation menu will appear that shows the directory structure. If you open any of the `Chapter...` folders, you will see notebook files which can be opened and used interactively. For our purposes, however, we will open a template notebook which loads all of the required tools. This notebook is contained at `Examples/template.jl` and can be opened from the text box (see below).
112112
"""
113113

114+
# ╔═╡ 206588a7-0f0f-44a0-b982-abc4fdaa5582
115+
md"""
116+
![](https://raw.githubusercontent.com/jekyllstein/Reinforcement-Learning-Sutton-Barto-Exercise-Solutions/02a1ea29b5cf9e8ce783d23dadcb3f33995e48c9/TabularRL.jl/examples/template_opening.png)
117+
"""
118+
114119
# ╔═╡ 20ebb844-bde2-41fd-a512-d62991e2f6d0
115120
md"""
116121
By default, the notebook will open in a preview mode (see below). Click `Run notebook code` at the top to run the notebook and have access to all the tools. From there you can add cells to the notebook and enter commands in them just like you would in the REPL. The code examples which follow can work either in the REPL or the notebook.
117122
"""
118123

124+
# ╔═╡ 40475cd8-80d9-4090-9f92-61b746923517
125+
md"""
126+
![](https://raw.githubusercontent.com/jekyllstein/Reinforcement-Learning-Sutton-Barto-Exercise-Solutions/02a1ea29b5cf9e8ce783d23dadcb3f33995e48c9/TabularRL.jl/examples/template_notebook.png)
127+
"""
128+
129+
# ╔═╡ 908e9a26-f0c3-4e51-995e-f3b474fbc477
130+
md"""
131+
# Basic Usage
132+
133+
## Defining a Markov Reward Process
134+
"""
135+
136+
# ╔═╡ 95efac9a-559b-4cb0-aaed-8116fa09f45a
137+
138+
119139
# ╔═╡ b328f330-368c-11f0-107d-4b2801866e56
120140
md"""
121141
# Dependencies
@@ -444,9 +464,13 @@ version = "17.4.0+2"
444464
# ╟─2d0a1689-93d6-4be8-a991-64a2f57f8475
445465
# ╟─12d83219-d470-40e9-8bee-a3db0b2bd2a8
446466
# ╟─761318f2-095b-4e3f-a320-061e9f50f166
447-
# ╠═1519dfbc-e593-4f1e-9b09-9af8157b04b8
467+
# ╟─1519dfbc-e593-4f1e-9b09-9af8157b04b8
448468
# ╟─418687b7-73f4-476d-8eeb-9791830f44e3
469+
# ╟─206588a7-0f0f-44a0-b982-abc4fdaa5582
449470
# ╟─20ebb844-bde2-41fd-a512-d62991e2f6d0
471+
# ╟─40475cd8-80d9-4090-9f92-61b746923517
472+
# ╟─908e9a26-f0c3-4e51-995e-f3b474fbc477
473+
# ╠═95efac9a-559b-4cb0-aaed-8116fa09f45a
450474
# ╟─b328f330-368c-11f0-107d-4b2801866e56
451475
# ╠═88fc8fef-c10b-408c-82d5-cb97c87aa363
452476
# ╠═98c33627-bd5e-4d9e-b3c0-0c215b3abc1c

0 commit comments

Comments
 (0)