Skip to content

Commit 3a17120

Browse files
DrPeterVanNostrandjennijujuianconsolata
authored
fix: Poseidon spec's sparse-factorization w vector (#1278)
Co-authored-by: Jiaying Wang <[email protected]> Co-authored-by: Ian Davis <[email protected]>
1 parent cb7f4c5 commit 3a17120

File tree

1 file changed

+4
-8
lines changed

1 file changed

+4
-8
lines changed

content/algorithms/crypto/poseidon.md

Lines changed: 4 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -706,14 +706,10 @@ $\overline{\underline{\Function \textsf{sparse\_factorize}(m \typecolon \Zp^{[t
706706
0 & m_{t - 1, 1} & \dots & m_{t - 1, t - 1}
707707
\end{bmatrix} \\~
708708
\\
709-
\line{3} \wb \typecolon \Zp^{[t - 1 {\times} 1]} = \hat{m}_{\ast, 0} = \begin{bmatrix}
710-
\hat{m}_{0, 0} \\
709+
\line{3} \wb \typecolon \Zp^{[t - 1 {\times} 1]} = m_{1 \dotdot, 0} = \begin{bmatrix}
710+
m_{1, 0} \\
711711
\vdots \\
712-
\hat{m}_{t - 2, 0}
713-
\end{bmatrix} = m_{1 \dotdot, 1} = \begin{bmatrix}
714-
m_{1, 1} \\
715-
\vdots \\
716-
m_{t - 1, 1}
712+
m_{t - 1, 0}
717713
\end{bmatrix} \\~
718714
\\
719715
\line{4} \hat\wb \typecolon \Zp^{[t - 1 {\times} 1]} = \hat{m}^{\neg 1} {\times} \hso \wb = \begin{bmatrix}
@@ -738,7 +734,7 @@ $\overline{\underline{\Function \textsf{sparse\_factorize}(m \typecolon \Zp^{[t
738734
**Algorithm Comments:**\
739735
**Line 1.** $\hat{m}$ is a submatrix of $m$ which excludes $m$'s first row and first column.\
740736
**Line 2.** $m'$ is a copy of $m$ where $m$'s first row and first column have been replaced with $[1, 0, \dots, 0]$.\
741-
**Line 3.** $\wb$ is a column vector which is the first column of $\hat{m}$ or the second column of $m$ excluding the first row's value.\
737+
**Line 3.** $\wb$ is a column vector whose values are the first column of $m$ excluding $m$'s first row.
742738
**Line 4.** $\hat\wb$ is the matrix-column vector product of $\hat{m}^{\neg 1}$ and $\wb$.\
743739
**Line 5.** $m''$ is a sparse matrix whose first row is the first row of $m$, remaining first column is $\hat\wb$, and remaining entries are the identity matrix.
744740

0 commit comments

Comments
 (0)