@@ -28,18 +28,18 @@ redirect_from:
28
28
<div style =" flex : 2 ; padding-right : 20px ;" >
29
29
<b>Booster: Tackling Harmful Fine-tuning for Large Language Models via Attenuating Harmful Perturbation</b><br>
30
30
T. Huang, S. Hu, <b>F. Ilhan</b>, S. F. Tekin, and L. Liu.
31
- <i>International Conference on Learning Representations</i>, 2025. (<b>ICLR oral</b>) ( <a href="https://openreview.net/pdf?id=tTPHgb0EtV">paper</a>) ( <a href="https://github.com/git-disl/Booster">code</a>)
31
+ <i>International Conference on Learning Representations</i>, 2025. (<b>ICLR oral</b>) [ <a href="https://openreview.net/pdf?id=tTPHgb0EtV">paper</a>] [ <a href="https://github.com/git-disl/Booster">code</a>]
32
32
</div >
33
33
<div style =" flex : 1 ;" >
34
- <img src="files/ph.png " alt="" style="max-width: 100%; border: 1px solid #eee;">
34
+ <img src="files/paper_imgs/booster " alt="" style="max-width: 100%; border: 1px solid #eee;">
35
35
</div >
36
36
</div >
37
37
38
38
<div style =" display : flex ; align-items : flex-start ; margin-bottom : 30px ;" >
39
39
<div style =" flex : 2 ; padding-right : 20px ;" >
40
40
<b>Resource-Efficient Transformer Pruning for Finetuning of Large Models</b><br>
41
41
<b>F. Ilhan</b>, G. Su, S. F. Tekin, T. Huang, S. Hu, and L. Liu.
42
- <i>IEEE/CVF Conference on Computer Vision and Pattern Recognition</i>, 2024. (<b>CVPR</b>) ( <a href="https://openaccess.thecvf.com/content/CVPR2024/papers/Ilhan_Resource-Efficient_Transformer_Pruning_for_Finetuning_of_Large_Models_CVPR_2024_paper.pdf">paper</a>) ( <a href="https://github.com/git-disl/recap">code</a>)
42
+ <i>IEEE/CVF Conference on Computer Vision and Pattern Recognition</i>, 2024. (<b>CVPR</b>) [ <a href="https://openaccess.thecvf.com/content/CVPR2024/papers/Ilhan_Resource-Efficient_Transformer_Pruning_for_Finetuning_of_Large_Models_CVPR_2024_paper.pdf">paper</a>] [ <a href="https://github.com/git-disl/recap">code</a>]
43
43
</div >
44
44
<div style =" flex : 1 ;" >
45
45
<img src="files/paper_imgs/recap.png" alt="" style="max-width: 100%; border: 1px solid #eee;">
@@ -50,7 +50,7 @@ redirect_from:
50
50
<div style =" flex : 2 ; padding-right : 20px ;" >
51
51
<b>Adaptive Deep Neural Network Inference Optimization with EENet</b><br>
52
52
<b>F. Ilhan</b>, KH. Chow, S. Hu, T. Huang, S. F. Tekin, W. Wei, Y. Wu, M. Lee, R. Kompella, H. Latapie, G. Liu, L. Liu.
53
- <i>IEEE/CVF Winter Conference on Applications of Computer Vision</i>, 2024. (<b>WACV</b>) ( <a href="https://openaccess.thecvf.com/content/WACV2024/papers/Ilhan_Adaptive_Deep_Neural_Network_Inference_Optimization_With_EENet_WACV_2024_paper.pdf">paper</a>) ( <a href="https://github.com/git-disl/eenet">code</a>)
53
+ <i>IEEE/CVF Winter Conference on Applications of Computer Vision</i>, 2024. (<b>WACV</b>) [ <a href="https://openaccess.thecvf.com/content/WACV2024/papers/Ilhan_Adaptive_Deep_Neural_Network_Inference_Optimization_With_EENet_WACV_2024_paper.pdf">paper</a>] [ <a href="https://github.com/git-disl/eenet">code</a>]
54
54
</div >
55
55
<div style =" flex : 1 ;" >
56
56
<img src="files/paper_imgs/eenet.png" alt="" style="max-width: 100%; border: 1px solid #eee;">
@@ -61,29 +61,29 @@ redirect_from:
61
61
<div style =" flex : 2 ; padding-right : 20px ;" >
62
62
<b>Lazy Safety Alignment for Large Language Models against Harmful Fine-tuning</b><br>
63
63
T. Huang, S. Hu, <b>F. Ilhan</b>, S. F. Tekin and L. Liu.
64
- <i>Thirty-seventh Conference on Neural Information Processing Systems</i>, 2024. (<b>NeurIPS</b>) ( <a href="https://openreview.net/pdf?id=RPChapuXlC">paper</a>) ( <a href="https://github.com/git-disl/Lisa">code</a>)
64
+ <i>Thirty-seventh Conference on Neural Information Processing Systems</i>, 2024. (<b>NeurIPS</b>) [ <a href="https://openreview.net/pdf?id=RPChapuXlC">paper</a>] [ <a href="https://github.com/git-disl/Lisa">code</a>]
65
65
</div >
66
66
<div style =" flex : 1 ;" >
67
- <img src="files/ph .png" alt="" style="max-width: 100%; border: 1px solid #eee;">
67
+ <img src="files/paper_imgs/lisa .png" alt="" style="max-width: 100%; border: 1px solid #eee;">
68
68
</div >
69
69
</div >
70
70
71
71
<div style =" display : flex ; align-items : flex-start ; margin-bottom : 30px ;" >
72
72
<div style =" flex : 2 ; padding-right : 20px ;" >
73
73
<b>LLM-TOPLA: Efficient LLM Ensemble by Maximising Diversity</b><br>
74
74
S. F. Tekin, <b>F. Ilhan</b>, T. Huang, S. Hu and L. Liu.
75
- <i>ACL Conference on Empirical Methods in Natural Language Processing</i>, 2024. (<b>EMNLP findings</b>) ( <a href="https://openreview.net/forum?id=mG5jikbsaJ#discussion">paper</a>) ( <a href="https://github.com/git-disl/llm-topla">code</a>)
75
+ <i>ACL Conference on Empirical Methods in Natural Language Processing</i>, 2024. (<b>EMNLP findings</b>) [ <a href="https://openreview.net/forum?id=mG5jikbsaJ#discussion">paper</a>] [ <a href="https://github.com/git-disl/llm-topla">code</a>]
76
76
</div >
77
77
<div style =" flex : 1 ;" >
78
- <img src="files/ph .png" alt="" style="max-width: 100%; border: 1px solid #eee;">
78
+ <img src="files/paper_imgs/llmtopla .png" alt="" style="max-width: 100%; border: 1px solid #eee;">
79
79
</div >
80
80
</div >
81
81
82
82
<div style =" display : flex ; align-items : flex-start ; margin-bottom : 30px ;" >
83
83
<div style =" flex : 2 ; padding-right : 20px ;" >
84
84
<b>ScaleFL: Resource-Adaptive Federated Learning with Heterogeneous Clients</b><br>
85
85
<b>F. Ilhan</b>, G. Su and L. Liu.
86
- <i>IEEE/CVF Conference on Computer Vision and Pattern Recognition</i>, 2023. (<b>CVPR</b>) ( <a href="https://openaccess.thecvf.com/content/CVPR2023/papers/Ilhan_ScaleFL_Resource-Adaptive_Federated_Learning_With_Heterogeneous_Clients_CVPR_2023_paper.pdf">paper</a>) ( <a href="https://github.com/git-disl/scale-fl">code</a>)
86
+ <i>IEEE/CVF Conference on Computer Vision and Pattern Recognition</i>, 2023. (<b>CVPR</b>) [ <a href="https://openaccess.thecvf.com/content/CVPR2023/papers/Ilhan_ScaleFL_Resource-Adaptive_Federated_Learning_With_Heterogeneous_Clients_CVPR_2023_paper.pdf">paper</a>] [ <a href="https://github.com/git-disl/scale-fl">code</a>]
87
87
</div >
88
88
<div style =" flex : 1 ;" >
89
89
<img src="files/paper_imgs/scalefl.png" alt="" style="max-width: 100%; border: 1px solid #eee;">
@@ -94,31 +94,31 @@ redirect_from:
94
94
<div style =" flex : 2 ; padding-right : 20px ;" >
95
95
<b>Lockdown: Backdoor Defense for Federated Learning with Isolated Subspace Training</b><br>
96
96
T. Huang, S. Hu, <b>F. Ilhan</b>, S. F. Tekin and L. Liu.
97
- <i>Thirty-seventh Conference on Neural Information Processing Systems</i>, 2023. (<b>Neurips </b>) ( <a href="https://openreview.net/pdf?id=V5cQH7JbGo">paper</a>) ( <a href="https://github.com/git-disl/Lockdown">code</a>)
97
+ <i>Thirty-seventh Conference on Neural Information Processing Systems</i>, 2023. (<b>NeurIPS </b>) [ <a href="https://openreview.net/pdf?id=V5cQH7JbGo">paper</a>] [ <a href="https://github.com/git-disl/Lockdown">code</a>]
98
98
</div >
99
99
<div style =" flex : 1 ;" >
100
- <img src="files/ph.png " alt="" style="max-width: 100%; border: 1px solid #eee;">
100
+ <img src="files/paper_imgs/lockdown " alt="" style="max-width: 100%; border: 1px solid #eee;">
101
101
</div >
102
102
</div >
103
103
104
104
<div style =" display : flex ; align-items : flex-start ; margin-bottom : 30px ;" >
105
105
<div style =" flex : 2 ; padding-right : 20px ;" >
106
106
<b>Markovian RNN: An Adaptive Time Series Prediction Network with HMM-based Switching for Nonstationary Environments</b><br>
107
107
<b>F. Ilhan</b>, O. Karaahmetoglu, Ismail Balaban and S. S. Kozat.
108
- <i>IEEE Transactions on Neural Networks and Learning Systems</i>, 2021. (<b>IEEE TNNLS</b>) ( <a href="https://ieeexplore.ieee.org/document/9509335">paper</a>) ( <a href="https://github.com/fatih-ilhan/markov-rnn">code</a>)
108
+ <i>IEEE Transactions on Neural Networks and Learning Systems</i>, 2021. (<b>IEEE TNNLS</b>) [ <a href="https://ieeexplore.ieee.org/document/9509335">paper</a>] [ <a href="https://github.com/fatih-ilhan/markov-rnn">code</a>]
109
109
</div >
110
110
<div style =" flex : 1 ;" >
111
- <img src="files/ph .png" alt="" style="max-width: 100%; border: 1px solid #eee;">
111
+ <img src="files/paper_imgs/markovrnn .png" alt="" style="max-width: 100%; border: 1px solid #eee;">
112
112
</div >
113
113
</div >
114
114
115
115
<div style =" display : flex ; align-items : flex-start ; margin-bottom : 30px ;" >
116
116
<div style =" flex : 2 ; padding-right : 20px ;" >
117
117
<b>Modeling of Spatio-Temporal Hawkes Processes with Randomized Kernels</b><br>
118
118
<b>F. Ilhan</b> and S. S. Kozat.
119
- <i>IEEE Transactions on Signal Processing</i>, 2020. (<b>IEEE TSP</b>) ( <a href="https://ieeexplore.ieee.org/document/9177186">paper</a>) ( <a href="https://github.com/fatih-ilhan/sthawkes">code</a>)
119
+ <i>IEEE Transactions on Signal Processing</i>, 2020. (<b>IEEE TSP</b>) [ <a href="https://ieeexplore.ieee.org/document/9177186">paper</a>] [ <a href="https://github.com/fatih-ilhan/sthawkes">code</a>]
120
120
</div >
121
121
<div style =" flex : 1 ;" >
122
- <img src="files/ph .png" alt="" style="max-width: 100%; border: 1px solid #eee;">
122
+ <img src="files/paper_imgs/sthawkes .png" alt="" style="max-width: 100%; border: 1px solid #eee;">
123
123
</div >
124
124
</div >
0 commit comments