You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: pytests/tuqquery/tuq_vectorsearch.py
+26-18Lines changed: 26 additions & 18 deletions
Original file line number
Diff line number
Diff line change
@@ -535,12 +535,16 @@ def test_advise_ann(self):
535
535
similarity=self.distance.lower()
536
536
ifsimilarityin ['l2', 'euclidean']:
537
537
similarity+='_squared'
538
-
expected_index1=f"CREATE INDEX adv_brand_size_vecVECTOR_id ON `default`(`brand`,`size`,`vec` VECTOR,`id`) WITH {{ 'dimension': 128, 'similarity': '{similarity}', 'description': 'IVF,SQ8' }}"
539
-
expected_index2=f"CREATE INDEX adv_size_brand_vecVECTOR_id ON `default`(`size`,`brand`,`vec` VECTOR,`id`) WITH {{ 'dimension': 128, 'similarity': '{similarity}', 'description': 'IVF,SQ8' }}"
540
-
expected_bhive_index1=f"CREATE VECTOR INDEX adv_VECTOR_vecVECTOR_INCLUDE_brand_size_id ON `default`(`vec` VECTOR) INCLUDE (`brand`,`size`,`id`) WITH {{ 'dimension': 128, 'similarity': '{similarity}', 'description': 'IVF,SQ8' }}"
541
-
expected_bhive_index2=f"CREATE VECTOR INDEX adv_VECTOR_vecVECTOR_INCLUDE_size_brand_id ON `default`(`vec` VECTOR) INCLUDE (`size`,`brand`,`id`) WITH {{ 'dimension': 128, 'similarity': '{similarity}', 'description': 'IVF,SQ8' }}"
538
+
vector_type=self.vector_type.upper()
539
+
expected_index1=f"CREATE INDEX adv_brand_size_vec{vector_type}VECTOR_id ON `default`(`brand`,`size`,`vec` {vector_type} VECTOR,`id`) WITH {{ 'dimension': 128, 'similarity': '{similarity}', 'description': 'IVF,SQ8' }}"
540
+
expected_index2=f"CREATE INDEX adv_size_brand_vec{vector_type}VECTOR_id ON `default`(`size`,`brand`,`vec` {vector_type} VECTOR,`id`) WITH {{ 'dimension': 128, 'similarity': '{similarity}', 'description': 'IVF,SQ8' }}"
541
+
expected_bhive_index1=f"CREATE VECTOR INDEX adv_VECTOR_vec{vector_type}VECTOR_INCLUDE_brand_size_id ON `default`(`vec` {vector_type} VECTOR) INCLUDE (`brand`,`size`,`id`) WITH {{ 'dimension': 128, 'similarity': '{similarity}', 'description': 'IVF,SQ8' }}"
542
+
expected_bhive_index2=f"CREATE VECTOR INDEX adv_VECTOR_vec{vector_type}VECTOR_INCLUDE_size_brand_id ON `default`(`vec` {vector_type} VECTOR) INCLUDE (`size`,`brand`,`id`) WITH {{ 'dimension': 128, 'similarity': '{similarity}', 'description': 'IVF,SQ8' }}"
advise_ann_query=f'ADVISE SELECT id, size, brand FROM default WHERE size = 6 AND brand = "Puma" ORDER BY ANN_DISTANCE(vec, {self.xq[1].tolist()}, "{self.distance}") LIMIT 100'
544
+
ifself.vector_type=='sparse':
545
+
advise_ann_query=f'ADVISE SELECT id, size, brand FROM default WHERE size = 6 AND brand = "Puma" ORDER BY SPARSE_VECTOR_DISTANCE(vec, {self.xq[1].tolist()}, {self.nprobes}) LIMIT 100'
546
+
else:
547
+
advise_ann_query=f'ADVISE SELECT id, size, brand FROM default WHERE size = 6 AND brand = "Puma" ORDER BY ANN_DISTANCE(vec, {self.xq[1].tolist()}, "{self.distance}", {self.nprobes}) LIMIT 100'
self.run_cbq_query(f'DROP INDEX adv_brand_size_vecVECTOR_id IF EXISTS on default')
561
-
self.run_cbq_query(f'DROP INDEX adv_size_brand_vecVECTOR_id IF EXISTS on default')
562
-
self.run_cbq_query(f'DROP INDEX adv_VECTOR_vecVECTOR_INCLUDE_brand_size_id IF EXISTS on default')
563
-
self.run_cbq_query(f'DROP INDEX adv_VECTOR_vecVECTOR_INCLUDE_size_brand_id IF EXISTS on default')
564
+
self.run_cbq_query(f'DROP INDEX adv_brand_size_vec{vector_type}VECTOR_id IF EXISTS on default')
565
+
self.run_cbq_query(f'DROP INDEX adv_size_brand_vec{vector_type}VECTOR_id IF EXISTS on default')
566
+
self.run_cbq_query(f'DROP INDEX adv_VECTOR_vec{vector_type}VECTOR_INCLUDE_brand_size_id IF EXISTS on default')
567
+
self.run_cbq_query(f'DROP INDEX adv_VECTOR_vec{vector_type}VECTOR_INCLUDE_size_brand_id IF EXISTS on default')
564
568
565
569
deftest_advise_ann_no_limit(self):
566
570
similarity=self.distance.lower()
567
571
ifsimilarityin ['l2', 'euclidean']:
568
572
similarity+='_squared'
569
-
expected_index1=f"CREATE INDEX adv_brand_size_vecVECTOR_id ON `default`(`brand`,`size`,`vec` VECTOR,`id`) WITH {{ 'dimension': 128, 'similarity': '{similarity}', 'description': 'IVF,SQ8' }}"
570
-
expected_index2=f"CREATE INDEX adv_size_brand_vecVECTOR_id ON `default`(`size`,`brand`,`vec` VECTOR,`id`) WITH {{ 'dimension': 128, 'similarity': '{similarity}', 'description': 'IVF,SQ8' }}"
571
-
expected_bhive_index1=f"CREATE VECTOR INDEX adv_VECTOR_vecVECTOR_INCLUDE_brand_size_id ON `default`(`vec` VECTOR) INCLUDE (`brand`,`size`,`id`) WITH {{ 'dimension': 128, 'similarity': '{similarity}', 'description': 'IVF,SQ8' }}"
572
-
expected_bhive_index2=f"CREATE VECTOR INDEX adv_VECTOR_vecVECTOR_INCLUDE_size_brand_id ON `default`(`vec` VECTOR) INCLUDE (`size`,`brand`,`id`) WITH {{ 'dimension': 128, 'similarity': '{similarity}', 'description': 'IVF,SQ8' }}"
573
-
advise_ann_query=f'ADVISE SELECT id, size, brand FROM default WHERE size = 6 AND brand = "Puma" ORDER BY ANN_DISTANCE(vec, {self.xq[1].tolist()}, "{self.distance}")'
573
+
vector_type=self.vector_type.upper()
574
+
expected_index1=f"CREATE INDEX adv_brand_size_vec{vector_type}VECTOR_id ON `default`(`brand`,`size`,`vec` {vector_type} VECTOR,`id`) WITH {{ 'dimension': 128, 'similarity': '{similarity}', 'description': 'IVF,SQ8' }}"
575
+
expected_index2=f"CREATE INDEX adv_size_brand_vec{vector_type}VECTOR_id ON `default`(`size`,`brand`,`vec` {vector_type} VECTOR,`id`) WITH {{ 'dimension': 128, 'similarity': '{similarity}', 'description': 'IVF,SQ8' }}"
576
+
expected_bhive_index1=f"CREATE VECTOR INDEX adv_VECTOR_vec{vector_type}VECTOR_INCLUDE_brand_size_id ON `default`(`vec` {vector_type} VECTOR) INCLUDE (`brand`,`size`,`id`) WITH {{ 'dimension': 128, 'similarity': '{similarity}', 'description': 'IVF,SQ8' }}"
577
+
expected_bhive_index2=f"CREATE VECTOR INDEX adv_VECTOR_vec{vector_type}VECTOR_INCLUDE_size_brand_id ON `default`(`vec` {vector_type} VECTOR) INCLUDE (`size`,`brand`,`id`) WITH {{ 'dimension': 128, 'similarity': '{similarity}', 'description': 'IVF,SQ8' }}"
578
+
ifself.vector_type=='sparse':
579
+
advise_ann_query=f'ADVISE SELECT id, size, brand FROM default WHERE size = 6 AND brand = "Puma" ORDER BY SPARSE_VECTOR_DISTANCE(vec, {self.xq[1].tolist()}, {self.nprobes})'
580
+
else:
581
+
advise_ann_query=f'ADVISE SELECT id, size, brand FROM default WHERE size = 6 AND brand = "Puma" ORDER BY ANN_DISTANCE(vec, {self.xq[1].tolist()}, "{self.distance}", {self.nprobes})'
0 commit comments