Skip to content

Commit 1d1f5c5

Browse files
authored
Merge pull request #408 from elfofmaxwell/preprocessing_docstring
Preprocessing docstring
2 parents f5ec039 + 6605b7a commit 1d1f5c5

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

44 files changed

+1900
-1373
lines changed

.pre-commit-config.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
repos:
22
- repo: https://github.com/python/black
3-
rev: 20.8b1
3+
rev: 22.6.0
44
hooks:
55
- id: black
66
args: [--line-length=120]

docs/requirements.txt

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -33,4 +33,5 @@ GitPython
3333
KDEpy
3434

3535
sphinxcontrib-bibtex>=2.3
36-
sphinx-gallery
36+
sphinx-gallery
37+
typing-extensions

dynamo/estimation/csc/utils_velocity.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -663,7 +663,7 @@ def solve_alpha_degradation(t, u, beta, intercept=False):
663663
ym = np.mean(y)
664664

665665
# calculate slope
666-
var_x = np.mean(x ** 2) - xm ** 2
666+
var_x = np.mean(x**2) - xm**2
667667
cov = np.sum(y.dot(x)) / n - ym * xm
668668
k = cov / var_x
669669

@@ -776,7 +776,7 @@ def concat_time_series_matrices(mats, t=None):
776776
# ---------------------------------------------------------------------------------------------------
777777
# negbin method related
778778
def compute_dispersion(mX, varX):
779-
phi = fit_linreg(mX ** 2, varX - mX, intercept=False)[0]
779+
phi = fit_linreg(mX**2, varX - mX, intercept=False)[0]
780780
return phi
781781

782782

dynamo/estimation/fit_jacobian.py

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -5,23 +5,23 @@
55

66

77
def hill_inh_func(x, A, K, n, g):
8-
Kd = K ** n
9-
return A * Kd / (Kd + x ** n) - g * x
8+
Kd = K**n
9+
return A * Kd / (Kd + x**n) - g * x
1010

1111

1212
def hill_inh_grad(x, A, K, n, g):
13-
Kd = K ** n
14-
return -A * n * Kd * x ** (n - 1) / (Kd + x ** n) ** 2 - g
13+
Kd = K**n
14+
return -A * n * Kd * x ** (n - 1) / (Kd + x**n) ** 2 - g
1515

1616

1717
def hill_act_func(x, A, K, n, g):
18-
Kd = K ** n
19-
return A * x ** n / (Kd + x ** n) - g * x
18+
Kd = K**n
19+
return A * x**n / (Kd + x**n) - g * x
2020

2121

2222
def hill_act_grad(x, A, K, n, g):
23-
Kd = K ** n
24-
return A * n * Kd * x ** (n - 1) / (Kd + x ** n) ** 2 - g
23+
Kd = K**n
24+
return A * n * Kd * x ** (n - 1) / (Kd + x**n) ** 2 - g
2525

2626

2727
def calc_mean_squared_deviation(func, x_data, y_mean, y_sigm, weighted=True):

dynamo/estimation/tsc/utils_kinetic.py

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -252,11 +252,11 @@ def get_n_labeled(self):
252252

253253
def get_var_nu(self):
254254
c = self.get_nu()
255-
return self.x[:, self.uu] + c - c ** 2
255+
return self.x[:, self.uu] + c - c**2
256256

257257
def get_var_nx(self):
258258
c = self.get_nx()
259-
return self.x[:, self.xx] + c - c ** 2
259+
return self.x[:, self.xx] + c - c**2
260260

261261
def get_cov_ux(self):
262262
cu = self.get_nu()
@@ -380,7 +380,7 @@ def get_nu(self):
380380

381381
def get_var_nu(self):
382382
c = self.get_nu()
383-
return self.x[:, self.uu] + c - c ** 2
383+
return self.x[:, self.uu] + c - c**2
384384

385385
def computeKnp(self):
386386
# parameters
@@ -480,11 +480,11 @@ def get_mean_s(self):
480480

481481
def get_var_u(self):
482482
c = self.get_mean_u()
483-
return self.x[:, self.uu] - c ** 2
483+
return self.x[:, self.uu] - c**2
484484

485485
def get_var_s(self):
486486
c = self.get_mean_s()
487-
return self.x[:, self.ss] - c ** 2
487+
return self.x[:, self.ss] - c**2
488488

489489
def get_cov_us(self):
490490
cu = self.get_mean_u()
@@ -576,7 +576,7 @@ def get_mean_u(self):
576576

577577
def get_var_u(self):
578578
c = self.get_mean_u()
579-
return self.x[:, self.uu] - c ** 2
579+
return self.x[:, self.uu] - c**2
580580

581581
def computeKnp(self):
582582
# parameters

dynamo/estimation/tsc/utils_moments.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -124,11 +124,11 @@ def get_n_labeled(self):
124124

125125
def get_var_nu(self):
126126
c = self.get_nu()
127-
return self.x[:, self.uu] + c - c ** 2
127+
return self.x[:, self.uu] + c - c**2
128128

129129
def get_var_nx(self):
130130
c = self.get_nx()
131-
return self.x[:, self.xx] + c - c ** 2
131+
return self.x[:, self.xx] + c - c**2
132132

133133
def get_cov_ux(self):
134134
cu = self.get_nu()

dynamo/external/pearson_residual_recipe.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -133,7 +133,7 @@ def _highly_variable_pearson_residuals(
133133
stop = start + chunksize
134134
mu = np.array(sums_cells @ sums_genes[:, start:stop] / sum_total)
135135
X_dense = X_batch[:, start:stop].toarray()
136-
residuals = (X_dense - mu) / np.sqrt(mu + mu ** 2 / theta)
136+
residuals = (X_dense - mu) / np.sqrt(mu + mu**2 / theta)
137137
residuals = np.clip(residuals, a_min=-clip, a_max=clip)
138138
residual_gene_var[start:stop] = np.var(residuals, axis=0)
139139

@@ -377,7 +377,7 @@ def compute_pearson_residuals(X, theta, clip, check_values, copy=False):
377377

378378
mu = np.array(sums_cells @ sums_genes / sum_total)
379379
diff = np.array(X - mu)
380-
residuals = diff / np.sqrt(mu + mu ** 2 / theta)
380+
residuals = diff / np.sqrt(mu + mu**2 / theta)
381381

382382
# clip
383383
residuals = np.clip(residuals, a_min=-clip, a_max=clip)

dynamo/external/sctransform.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -216,7 +216,7 @@ def sctransform_core(
216216
x = model_pars["theta"].values.copy()
217217
x[x < min_theta] = min_theta
218218
model_pars["theta"] = x
219-
dispersion_par = np.log10(1 + 10 ** genes_log_gmean_step1 / model_pars["theta"].values.flatten())
219+
dispersion_par = np.log10(1 + 10**genes_log_gmean_step1 / model_pars["theta"].values.flatten())
220220

221221
model_pars_theta = model_pars["theta"]
222222
model_pars = model_pars.iloc[:, model_pars.columns != "theta"].copy()
@@ -250,7 +250,7 @@ def sctransform_core(
250250
)
251251
full_model_pars[i] = kr.fit(data_predict=x_points)[0]
252252

253-
theta = 10 ** genes_log_gmean / (10 ** full_model_pars["dispersion"].values - 1)
253+
theta = 10**genes_log_gmean / (10 ** full_model_pars["dispersion"].values - 1)
254254
full_model_pars["theta"] = theta
255255
del full_model_pars["dispersion"]
256256

@@ -261,9 +261,9 @@ def sctransform_core(
261261
d = X.data
262262
x, y = X.nonzero()
263263
mud = np.exp(full_model_pars.values[:, 0][y] + full_model_pars.values[:, 1][y] * cell_attrs["log_umi"].values[x])
264-
vard = mud + mud ** 2 / full_model_pars["theta"].values.flatten()[y]
264+
vard = mud + mud**2 / full_model_pars["theta"].values.flatten()[y]
265265

266-
X.data[:] = (d - mud) / vard ** 0.5
266+
X.data[:] = (d - mud) / vard**0.5
267267
X.data[X.data < 0] = 0
268268
X.eliminate_zeros()
269269

dynamo/plot/ezplots.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -227,7 +227,7 @@ def zstreamline(
227227
"zorder": 3,
228228
}
229229

230-
mass = np.sqrt((V_grid ** 2).sum(0))
230+
mass = np.sqrt((V_grid**2).sum(0))
231231
# velocity filtering
232232
if min_vel_mag is not None:
233233
min_vel_mag = np.clip(min_vel_mag, None, np.quantile(mass, 0.4))

dynamo/plot/heatmaps.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,7 @@ def rep2(x, length_out):
6565

6666

6767
def dnorm(x, u=0, sig=1):
68-
return np.exp(-((x - u) ** 2) / (2 * sig ** 2)) / (math.sqrt(2 * math.pi) * sig)
68+
return np.exp(-((x - u) ** 2) / (2 * sig**2)) / (math.sqrt(2 * math.pi) * sig)
6969

7070

7171
def kde2d(x, y, h=None, n=25, lims=None):
@@ -286,7 +286,7 @@ def response(
286286

287287
id = 0
288288
for gene_pairs_ind, gene_pairs in enumerate(pairs_mat):
289-
f_ini_ind = (grid_num ** 2) * id
289+
f_ini_ind = (grid_num**2) * id
290290
r_ini_ind = grid_num * id
291291

292292
gene_pair_name = gene_pairs[0] + "->" + gene_pairs[1]
@@ -842,7 +842,7 @@ def causality(
842842
id = 0
843843
for gene_pairs_ind in range(0, len(pairs_mat)):
844844
gene_pairs = pairs_mat[gene_pairs_ind, :]
845-
f_ini_ind = (grid_num ** 2) * id
845+
f_ini_ind = (grid_num**2) * id
846846

847847
gene_pair_name = reduce(lambda a, b: a + "->" + b, gene_pairs)
848848

0 commit comments

Comments
 (0)