Title: Development of Skip Connection in Deep Neural Networks for Computer Vision and Medical Image Analysis: A Survey
Description: This project is part of our survey. The survey paper can be downloaded on: https://arxiv.org/abs/2405.01725 https://authors.elsevier.com/c/1kK1n3OWJ98huJ
Related papers:
(1) Fully convolutional networks for semantic segmentation
(2) U-Net: Convolutional Networks for Biomedical Image Segmentation
- Paper: https://arxiv.org/abs/1505.04597
- Code:https://github.com/tsmanral/U-Net-Convolutional-Networks-for-Biomedical-Image-Segmentation
(3) SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling
(4) DiSegNet: A deep dilated convolutional encoder-decoder architecture for lymph node segmentation on PET/CT images
(5) UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation
- Paper: https://arxiv.org/abs/1912.05074
- Code: https://github.com/MrGiovanni/UNetPlusPlus
(6) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
- Paper: https://www.nature.com/articles/s41592-020-01008-z
- Code: https://github.com/MIC-DKFZ/nnUNet
(7) Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections
(8) Densely Connected Convolutional Networks
- Paper: https://arxiv.org/abs/1608.06993
- Code: https://github.com/liuzhuang13/DenseNet
(9) Rapid whole-brain electric field mapping in transcranial magnetic stimulation using deep learning
(10) ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data
- Paper: https://www.sciencedirect.com/science/article/abs/pii/S0924271620300149
- Code: https://github.com/feevos/resuneta
(11) Volumetric ConvNets with mixed residual connections for automated prostate segmentation from 3D MR images
Related papers:
(1) Going Deeper with Convolutions
(2) Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
(3) Aggregated Residual Transformations for Deep Neural Networks
- Paper: https://arxiv.org/abs/1611.05431
- Code: https://github.com/facebookresearch/ResNeXt
(4) Res2Net: A New Multi-scale Backbone Architecture
(5) Wide Residual Networks
- Paper: https://arxiv.org/abs/1605.07146
- Code: https://github.com/szagoruyko/wide-residual-networks
Related papers:
(1) Identity Mappings in Deep Residual Networks
- Paper: https://arxiv.org/abs/1603.05027
- Code: https://github.com/KaimingHe/resnet-1k-layers
(2) Squeeze-and-excitation networks
(3) Selective kernel networks
(4) Resnest: Split-attention networks
- Paper: https://arxiv.org/abs/2004.08955
- Code: https://github.com/zhanghang1989/ResNeSt
(5) Cbam: Convolutional block attention module
(6) Dual Attention Network for Scene Segmentation
- Paper: https://arxiv.org/abs/1809.02983
- Code: https://github.com/niecongchong/DANet-keras
(7) Mobilenetv2: Inverted residuals and linear bottlenecks
(8) Rethinking bottleneck structure for efficient mobile network design
- Paper: https://arxiv.org/abs/2007.02269
- Code: https://github.com/zhoudaquan/rethinking_bottleneck_design
(9) Ghostnet: More features from cheap operations
- Paper: https://arxiv.org/abs/1911.11907
- Code: https://github.com/huawei-noah/Efficient-AI-Backbones
(10) Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
(11) DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
(12) Rethinking atrous convolution for semantic image segmentation
(13) Encoder-decoder with atrous separable convolution for semantic image segmentation
- Paper: https://arxiv.org/abs/1802.02611
- Code: https://github.com/tensorflow/models/tree/master/research/deeplab
(14) StereoDRNet: Dilated Residual Stereo Net
(15) Deep Pyramidal Residual Networks
(16) Compressed Sensing MRI via a Multi-scale Dilated Residual Convolution Network
(17) A Multiscale Image Denoising Algorithm Based On Dilated Residual Convolution Network
(18) Multi-level dilated residual network for biomedical image segmentation
(19) ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation
(20) ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network
(21) Deformable Convolutional Networks
- Paper: https://arxiv.org/abs/1703.06211
- Code: https://github.com/msracver/Deformable-ConvNets
(22)Temporal deformable residual networks for action segmentation in videos
(23) Deformable and residual convolutional network for image super-resolution
(24) Deformable 3D Convolution for Video Super-Resolution
(25) A Spectral Spatial Attention Fusion with Deformable Convolutional Residual Network for Hyperspectral Image Classification
(26) DCU-net: a deformable convolutional neural network based on cascade U-net for retinal vessel segmentation
Related papers:
(1)Enable Deep Learning on Mobile Devices: Methods, Systems, and Applications
(2) Network in network
(3) Aggregated Residual Transformations for Deep Neural Networks
- Paper: https://arxiv.org/abs/1611.05431
- Code: https://github.com/facebookresearch/ResNeXt
(4) ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
(5) MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
(6) ImageNet classification with deep convolutional neural networks
(7) Xception: Deep Learning with Depthwise Separable Convolutions
(8) Searching for MobileNetV3
- Paper: https://arxiv.org/abs/1905.02244
- Code: https://github.com/kuan-wang/pytorch-mobilenet-v3
(9) Deep Networks with Stochastic Depth
(10) Neural Network Pruning with Residual-Connections and Limited-Data
(11) ResKD: Residual-Guided Knowledge Distillation
Related papers:
(1) Non-local Neural Networks
- Paper: https://arxiv.org/abs/1711.07971
- Code: https://github.com/facebookresearch/video-nonlocal-net
(2) Ccnet:Criss-cross attention for semantic segmentation
(3) Expectation-Maximization Attention Networks for Semantic Segmentation
(4) An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
- Paper: https://arxiv.org/abs/2010.11929
- Code: https://github.com/google-research/vision_transformer
(5) Swin transformer: Hierarchical vision transformer using shifted windows
- Paper: https://arxiv.org/abs/2103.14030
- Code: https://github.com/microsoft/Swin-Transformer
(6) End-to-End Object Detection with Transformers
- Paper: https://arxiv.org/abs/2005.12872
- Code: https://github.com/facebookresearch/detr
(7) Deformable DETR: Deformable Transformers for End-to-End Object Detection
- Paper: https://arxiv.org/abs/2010.04159
- Code: https://github.com/fundamentalvision/Deformable-DETR
(8) Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers
(9) TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation
- Paper: https://arxiv.org/abs/2102.04306
- Code: https://github.com/Beckschen/TransUNet
(10) TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up
- Paper: https://arxiv.org/abs/2102.07074
- Code: https://github.com/VITA-Group/TransGAN
(11) Zero-Shot Text-to-Image Generation
Part II: Residual learning in image classification, object detection, semantic segmentation, image compression, deblur, denoise and Super-Resolution
(1) Deep Residual Learning for Image Recognition
- Paper: https://arxiv.org/abs/2312.00109
- Code: https://github.com/city-super/Scaffold-GS](https://github.com/KaimingHe/deep-residual-networks
(2) Highway Networks
- Paper: https://arxiv.org/abs/1505.00387
- Code: https://github.com/c0nn3r/pytorch_highway_networks
(3)Deep Pyramidal Residual Networks
- Paper: https://arxiv.org/abs/1610.02915
- Code: https://github.com/dyhan0920/PyramidNet-PyTorch
(4)Wider or Deeper: Revisiting the ResNet Model for Visual Recognition
(5)Aggregated Residual Transformations for Deep Neural Networks
- Paper: https://arxiv.org/abs/1611.05431
- Code: https://github.com/prlz77/ResNeXt.pytorch
(6)Densely Connected Convolutional Networks
- Paper: https://arxiv.org/abs/1608.06993
- Code: https://github.com/bamos/densenet.pytorch
(7)DPN
(8)Invertible Residual Networks
- Paper: https://proceedings.mlr.press/v97/behrmann19a.html
- Code: https://github.com/jhjacobsen/invertible-resnet
(9)Training wide residual networks for deployment using a single bit for each weight
- Paper: https://openreview.net/forum?id=rytNfI1AZ
- Code: https://github.com/McDonnell-Lab/1-bit-per-weight
(10)Residual Attention Network for Image Classification
- Paper: https://arxiv.org/abs/1704.06904
- Code: https://github.com/tengshaofeng/ResidualAttentionNetwork-pytorch
(11)MaxViT: Multi-Axis Vision Transformer
- Paper: https://arxiv.org/abs/2204.01697
- Code: https://github.com/google-research/maxvit
(12)MLP-Mixer: An all-MLP Architecture for Vision
- Paper: https://arxiv.org/abs/2105.01601
- Code: https://github.com/google-research/vision_transformer
(13)A ConvNet for the 2020s
- Paper: https://arxiv.org/abs/2201.03545
- Code: https://github.com/facebookresearch/ConvNeXt
(14)UniNet: Unified Architecture Search with Convolution, Transformer, and MLP
(14)CBAM: Convolutional Block Attention Module
- Paper: https://arxiv.org/abs/1807.06521
- Code: https://github.com/luuuyi/CBAM.PyTorch
(15)Res2Net: A New Multi-scale Backbone Architecture
- Paper: https://arxiv.org/abs/1904.01169
- Code: https://github.com/Res2Net/Res2Net-PretrainedModels
(1)Mask R-CNN
- Paper: https://arxiv.org/abs/1703.06870
- Code:https://github.com/facebookresearch/Detectron
(2)YOLOv3
(3)MaxViT
- Paper: https://arxiv.org/pdf/2204.01697
- Code: https://github.com/google-research/maxvit
(4)ConvNeXt
- Paper: https://openaccess.thecvf.com/content/CVPR2022/papers/Liu_A_ConvNet_for_the_2020s_CVPR_2022_paper
- Code: https://github.com/facebookresearch/ConvNeXt
(5)ScratchDet
- Paper: https://arxiv.org/pdf/1810.08425.pdf
- Code: https://github.com/KimSoybean/ScratchDet
(6)PoolNet
- Paper: https://openaccess.thecvf.com/content_CVPR_2019/papers/Liu_A_Simple_Pooling-Based_Design_for_Real-Time_Salient_Object_Detection_CVPR_2019_paper.pdf
- Code: https://github.com/backseason/PoolNet
(7)CPD
- Paper: https://openaccess.thecvf.com/content_CVPR_2019/papers/Wu_Cascaded_Partial_Decoder_for_Fast_and_Accurate_Salient_Object_Detection_CVPR_2019_paper.pdf
- Code: https://github.com/wuzhe71/CPD
(8)OPANAS
- Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Liang_OPANAS_OneShot_Path_Aggregation_Network_Architecture_Search_for_Object_Detection_CVPR_2021_paper.pdf
- Code: https://github.com/VDIGPKU/OPANAS.
(9)RetinaNet
- Paper: https://openaccess.thecvf.com/content_ICCV_2017/papers/Lin_Focal_Loss_for_ICCV_2017_paper.pdf
- Code: https://github.com/yhenon/pytorch-retinanet
(10) U^2Net
- Paper:https://arxiv.org/pdf/2005.09007.pdf
- Code:https://github.com/yhenon/pytorch-retinanet
(1)FCN
- Paper: https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf
- Code:https://github.com/shekkizh/FCN.tensorflow
(2)U-Net
- Paper: https://arxiv.org/pdf/1505.04597.pdf%EF%BC%89
- Code: https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
(3)SegNet
- Paper: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7803544
- Code: https://github.com/alexgkendall/caffe-segnet
(4)DiSegNet
- Paper: http://www.mipg.upenn.edu/yubing/DiSegNet.pdf
- Code: https://github.com/Francesco-Voto/Disegnetti
(5)Unet++
- Paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357299/
- Code: https://github.com/MrGiovanni/UNetPlusPlus
(6)ResUNet-a
- Paper: https://arxiv.org/pdf/1904.00592.pdf
- Code: https://github.com/feevos/resuneta
(7)ConvNet
- Paper: https://ojs.aaai.org/index.php/AAAI/article/view/10510
- Code: https://github.com/TorontoDeepLearning/convnet
(8)Inception-ResNet
- Paper: https://ojs.aaai.org/index.php/aaai/article/view/11231
- Code: https://github.com/titu1994/Inception-v4
(9)DANet
- Paper: https://openaccess.thecvf.com/content_CVPR_2019/papers/Fu_Dual_Attention_Network_for_Scene_Segmentation_CVPR_2019_paper.pdf
- Code: https://github.com/junfu1115/DANet
(10)DeepLab
- Paper: https://arxiv.org/pdf/1606.00915.pdf
- Code: https://github.com/kazuto1011/deeplab-pytorch
(11)DeepLabv3
- Paper: https://arxiv.org/pdf/1706.05587.pdf
- Code: https://github.com/fregu856/deeplabv3
(12)DeepLabv3+
- Paper: https://openaccess.thecvf.com/content_ECCV_2018/papers/Liang-Chieh_Chen_Encoder-Decoder_with_Atrous_ECCV_2018_paper.pdf
- Code: https://github.com/tensorflow/models/tree/master/research/deeplab}{TensorFlow
(13)ESPNet
- Paper: https://scholar.google.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=”Espnet%3A+Efficient+spatial+pyramid+of+dilated+convolutions+for+semantic+segmentation&btnG=&lr=
- Code: https://github.com/sacmehta/ESPNet
(14)ESPNetv2
- Paper: https://openaccess.thecvf.com/content_CVPR_2019/papers/Mehta_ESPNetv2_A_Light-Weight_Power_Efficient_and_General_Purpose_Convolutional_Neural_CVPR_2019_paper.pdf
- Code: https://github.com/sacmehta/ESPNetv2-COREML (15)DCU-Net -none
- Paper: https://link.springer.com/article/10.1007/s11042-022-12418-w
- Code: https://github.com/hwding-whu/DCU-Net
(16)CCNet
- Paper: https://openaccess.thecvf.com/content_ICCV_2019/papers/Huang_CCNet_Criss-Cross_Attention_for_Semantic_Segmentation_ICCV_2019_paper.pdf
- Code: https://github.com/speedinghzl/CCNet
(17)EMANet
- Paper: https://openaccess.thecvf.com/content_ICCV_2019/papers/Li_Expectation-Maximization_Attention_Networks_for_Semantic_Segmentation_ICCV_2019_paper.pdf
- Code: https://github.com/XiaLiPKU/EMANet
(18)Swin Transformer
- Paper: https://openaccess.thecvf.com/content/ICCV2021/papers/Liu_Swin_Transformer_Hierarchical_Vision_Transformer_Using_Shifted_Windows_ICCV_2021_paper.pdf
- Code: https://github.com/microsoft/Swin-Transformer
(19)TransUNet
- Paper: https://arxiv.org/pdf/2102.04306.pdf
- Code: https://github.com/Beckschen/TransUNet
(20)TransGAN
- Paper: https://proceedings.neurips.cc/paper_files/paper/2021/file/7c220a2091c26a7f5e9f1cfb099511e3-Paper.pdf
- Code: https://github.com/VITA-Group/TransGAN
(21)SAM
- Paper: https://scholar.google.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=Seg+anything&btnG=
- Code: https://github.com/facebookresearch/segment-anything
(1)Slimmable Compressive Autoencoders for Practical Neural Image Compression
(2)MAXIM: Multi-Axis MLP for Image Processing
- Paper: https://arxiv.org/abs/2201.02973
- Code: https://github.com/google-research/maxim
(3)Learned Image Compression with Discretized Gaussian Mixture Likelihoods and Attention Modules
- Paper: https://arxiv.org/abs/2001.01568
- Code: https://github.com/ZhengxueCheng/Learned-Image-Compression-with-GMM-and-Attention
(4)Online Multi-Granularity Distillation for GAN Compression
- Paper: https://arxiv.org/abs/2108.06908
- Code: https://github.com/mit-han-lab/gan-compression
(1)Unpaired Learning of Deep Image Denoising
(2)D2HNet: Joint Denoising and Deblurring with Hierarchical Network for Robust Night Image Restoration
(3)Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes
(4)Recorrupted-to-Recorrupted: Unsupervised Deep Learning for Image Denoising
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Pang_Recorrupted-to-Recorrupted_Unsupervised_Deep_Learning_for_Image_Denoising_CVPR_2021_paper.html
- Code: https://github.com/PangTongyao/Recorrupted-to-Recorrupted-Unsupervised-Deep-Learning-for-Image-Denoising
(5)Multi-stage image denoising with the wavelet transform
- Paper: https://arxiv.org/abs/2209.12394
- Code: https://github.com/hellloxiaotian/MWDCNN
(6)Adaptive Consistency Prior based Deep Network for Image Denoising
- Paper:https://openaccess.thecvf.com/content/CVPR2021/papers/Ren_Adaptive_Consistency_Prior_Based_Deep_Network_for_Image_Denoising_CVPR_2021_paper.pdf
- Code: https://github.com/chaoren88/DeamNet
(7)NBNet: Noise Basis Learning for Image Denoising with Subspace Projection
(1)DeFMO: Deblurring and Shape Recovery of Fast Moving Objects
- Paper: https://arxiv.org/abs/2012.00595
- Code: https://github.com/rozumden/DeFMO?tab=readme-ov-file
(2)PSD: Principled Synthetic-to-Real Dehazing Guided by Physical Priors
- Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Chen_PSD_Principled_Synthetic-to-Real_Dehazing_Guided_by_Physical_Priors_CVPR_2021_paper.pdf
- Code: https://github.com/zychen-ustc/PSD-Principled-Synthetic-to-Real-Dehazing-Guided-by-Physical-Priors
(3)Rethinking Coarse-to-Fine Approach in Single Image Deblurring
(4)DarkDeblur: Learning single-shot image deblurring in low-light condition
- Paper: https://www.sciencedirect.com/science/article/abs/pii/S0957417423002403
- Code: https://github.com/sharif-apu/DarkDeblur
(5)Multi-scale frequency separation network for image deblurring
- Paper: https://arxiv.org/abs/2206.00798
- Code: https://github.com/LiQiang0307/MSFS-Net
(6)Self-supervised Non-uniform Kernel Estimation with Flow-based Motion Prior for Blind Image Deblurring
- Paper: https://openaccess.thecvf.com/content/CVPR2023/papers/Fang_Self-Supervised_Non-Uniform_Kernel_Estimation_With_Flow-Based_Motion_Prior_for_Blind_CVPR_2023_paper.pdf
- Code: https://github.com/Fangzhenxuan/UFPDeblur?tab=readme-ov-file
(7)Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes
(1)Learning Enriched Features for Real Image Restoration and Enhancement
(2)MemNet: A Persistent Memory Network for Image Restoration
(3)In-Domain GAN Inversion for Real Image Editing
- Paper: https://arxiv.org/pdf/2004.00049
- Code: https://github.com/genforce/idinvert_pytorch
(4)Invertible Image Rescaling
- Paper: https://arxiv.org/abs/2005.05650
- Code: https://github.com/pkuxmq/Invertible-Image-Rescaling
(5)Reconstruction by inpainting for visual anomaly detection
- Paper: https://www.sciencedirect.com/science/article/abs/pii/S0031320320305094
- Code: https://github.com/plutoyuxie/Reconstruction-by-inpainting-for-visual-anomaly-detection
(6)Efficient Long-Range Attention Network for Image Super-resolution
(7)SwinIR: Image Restoration Using Swin Transformer
- Paper: https://arxiv.org/pdf/2108.10257
- Code: https://github.com/JingyunLiang/SwinIR
(8)Uformer: A General U-Shaped Transformer for Image Restoration
- Paper: https://arxiv.org/abs/2106.03106
- Code: https://github.com/ZhendongWang6/Uformer
(9)Residual Feature Distillation Network for Lightweight Image Super-Resolution
(1) Residual 3D Scene Flow Learning with Context-Aware Feature Extraction
(2) Residual 3D Scene Flow Learning with Context-Aware Feature Extraction
(3) STRPM: A Spatiotemporal Residual Predictive Model for High-Resolution Video Prediction
- Paper: https://arxiv.org/abs/2203.16084
- Code: https://github.com/ZhengChang467/STRPM
(4) Real Image Denoising with Feature Attention
(5) Residual Dense Network for Image Super-Resolution
- Paper: https://arxiv.org/abs/1802.08797
- Code: https://github.com/lingtengqiu/RDN-pytorch
(1) Progressive Ensemble Kernel-Based Broad Learning System for Noisy Data Classification
(2) Residual Networks Behave Like Ensembles of Relatively Shallow Networks
(1) Visualizing the Loss Landscape of Neural Nets
- Paper: https://arxiv.org/abs/1712.09913
- Code: https://github.com/tomgoldstein/loss-landscape
(2) Skip Connections Eliminate Singularities
- Paper: hhttps://arxiv.org/abs/1701.09175
(3) ShakeDrop Regularization for Deep Residual Learning
(4) VACL: Variance-Aware Cross-Layer Regularization for Pruning Deep Residual Networks
(1) Deep Residual Learning for Image Recognition
(2) The Shattered Gradients Problem: If resnets are the answer, then what is the question?
(3) SRNET: A Shallow Skip Connection Based Convolutional Neural Network Design for Resolving Singularities
- Paper: https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-019-1950-8
- Code: https://github.com/JiechaoSheng/SRNet
(4) Why Is Everyone Training Very Deep Neural Network With Skip Connections?
(1) The Shattered Gradients Problem: If resnets are the answer, then what is the question?