GovTool
Git(Hub) workflow proposal

by example

User story

As a team leader
| want to coordinate delivery of features to staging,

so they can be reviewed by product owners.

Case study

Two features are ready.

Only one is picked to be delivered.

The picked feature is reviewed and QA tested.
The picked feature end up on staging/preprod
to be further received by PO.

Scenario #1

current workflow

Scenario #1: current workflow

e 2 developers are working on 2 different tasks.

PR#1

Y
O—O

featB

--‘O O O O

test develop
staging featA

N

PR#2

Scenario #1: current workflow

e 2 developers are working on 2 different tasks.
e featA is merged after a review.

test develop O

staging featA
develop

Scenario #1: current workflow

e 2 developers are working on 2 different tasks.
o featA is merged after a review.
e featB has to be rebased to actual develop.

/
‘“O-O —Af) = '

test
staging

develop

Scenario #1: current workflow

2 developers are working on 2 different tasks.

featA is merged after a review.

featB has to be rebased to actual develop and featB
is merged after review to develop.

develop develop

Scenario #1: current workflow

2 developers are working on 2 different tasks.
featA is merged after a review.
featB has to be rebased to actual develop and featB
is merged after review to develop.
e Adecision is made to deliver only featA.

develop develop

Scenario #1: current workflow

2 developers are working on 2 different tasks.
featA is merged after a review.
featB has to be rebased to actual develop and featB
is merged after review to develop.
A decision is made to deliver only featA.
To deliver to test we need to:
o create a branch from test,
cherry-pick featA commits,
merge to test.

develop develop

Scenario #1: current workflow

2 developers are working on 2 different tasks.
featA is merged after a review.
featB has to be rebased to actual develop and featB
is merged after review to develop.
A decision is made to deliver only featA.
test-candidate is created.
To deliver to test we need to:
o cherry-pick featA commits,
o merge to test.

test O -O_O‘O -O
staging featA featB

test-candidate develop

Scenario #1: current workflow

2 developers are working on 2 different tasks.

featA is merged after a review.

featB has to be rebased to actual develop and featB

is merged after review to develop.

A decision is made to deliver only featA.

test-candidate is created. pRag
Commits from featA are cherry-picked.

To deliver to test we need to:

o merge to test. O O

test-candidate

-}~ —0-0-0-0-0

test
staging

featA

featB
develop

Scenario #1: current workflow

2 developers are working on 2 different tasks.

featA is merged after a review.

featB has to be rebased to actual develop and featB
is merged after review to develop.

A decision is made to deliver only featA.
test-candidate is created.

Commits from featA are cherry-picked.
test-candidate is merged after a review to test.

-0

test-candidate

‘-‘O O O test
test O o O‘O -O
staging featA featB

develop

Scenario #1: current workflow

2 developers are working on 2 different tasks.

featA is merged after a review.

featB has to be rebased to actual develop and featB
is merged after review to develop.

A decision is made to deliver only featA.
test-candidate is created.

Commits from featA are cherry-picked.
test-candidate is merged after a review to test.

QA tests are performed on test.

-0

test-candidate
‘-‘O__O O test
staging : O O -O

develop

Scenario #1: current workflow

2 developers are working on 2 different tasks.

featA is merged after a review.

featB has to be rebased to actual develop and featB
is merged after review to develop.

A decision is made to deliver only featA.
test-candidate is created.

Commits from featA are cherry-picked.
test-candidate is merged after a review to test.

QA tests are performed on test.

To deliver to staging we need to:

o create a branch from staging, O O

o cherry-pick test commits,

o merge to staging. test-candidate

‘-‘O O O test

staging

Scenario #1: current workflow

2 developers are working on 2 different tasks.

featA is merged after a review.

featB has to be rebased to actual develop and featB
is merged after review to develop.

A decision is made to deliver only featA.
test-candidate is created.

Commits from featA are cherry-picked.
test-candidate is merged after a review to test.

QA tests are performed on test.

To deliver to staging we need to:

o create a branch from staging, O O

e——=cherry-picktest-commits;

o merge test into staging, test-candidate

o merge to staging. ‘-\O O O test

CAVEAT: In this simple scenario we don't have
to cherry pick commits, but it is an edge case! Staglng

Scenario #1: current workflow - risks

e Every decision to pick only some selected features from the pool of all available features leads to cherry-picking of either
regular commits or merge commits.
e Cherry-picking creates a potential of human error (missing parts of a feature, dependencies, etc.)
e A pull request crafted by cherry-picking features has to be reviewed because of the above.
e The source branch (like branch “develop” in example) is never
a continuation of the target branch (like “test”), it is a fork.
Therefore the cherry-picking is necessary.
e This burdensome process is repeated on three different
stages of the current workflow: develop > test, test > staging
and staging > beta.
e Testing on reviewed features is on hold until
the test-candidate is merged, thus tasks are in limbo
state where they are completed, but not yet tested.
e There is a possibility that some cherry-picks will O
cause conflicts that has to be resolved by person

with a knowledge not only in the git tool, test-candidate

but also in a domain, language,
frameworks, libraries, etc. - ‘O et test
O
staging (:::)

develop

Scenario #2

proposal

Scenario #2: proposal

e 2 developers are working on 2 different tasks.

Scenario #2: proposal

e 2 developers are working on 2 different tasks.
e featA is reviewed.

Scenario #2: proposal

2 developers are working on 2 different tasks.

featA is reviewed.

featA is deployed to be QA tested.

At this point the featA is ready to be deployed on preprod (aka staging).

PR#1
featB
O O O O v
preprod <:::)
featA
fitestA

4

PR#2

Scenario #2: proposal

2 developers are working on 2 different tasks.
featA is reviewed.

featA is deployed to be QA tested.

featA is merged to preprod.

PR#1

featB
preprod feath
fitestA

preprod

Scenario #2: proposal

2 developers are working on 2 different tasks.

featA is reviewed.

featA is deployed to be QA tested.
featA is merged to preprod.
featB is reviewed.

PR#1

O -0

featB

‘“O O O“O — ()Y

featA
#itestA
preprod

Scenario #2: proposal

2 developers are working on 2 different tasks.

featA is reviewed.

featA is deployed to be QA tested.

featA is merged to preprod.

featB is reviewed.

featB is deployed to be QA tested.

At this point the featB is ready to be deployed on preprod (aka staging).

PR#1

N
O -0’
"/' ;:zgfL
TO"0—-0-0Z0-

featA
#itestA
preprod

Scenario #2: proposal

2 developers are working on 2 different tasks.
featA is reviewed.

featA is deployed to be QA tested.

featA is merged to preprod.

featB is reviewed.

featB is deployed to be QA tested.

featB is merged to preprod.

O-F
oo l/, J::gfz
—0-0—-0-¢ —OLO

fitestA
preprod

Scenario #2: proposal

2 developers are working on 2 different tasks.
featA is reviewed.

featA is deployed to be QA tested.

featA is merged to preprod.

featB is reviewed.

featB is deployed to be QA tested.

featB is merged to preprod.

O -0’
/ featB

‘_‘O O #testB
O-0- OLA)
featA preprod
#itestA

Scenario #2: proposal - risks

e Every decision to pick only some selected features from the pool of all available features leads to cherry-picking
of either regular commits or merge commits.

e Cherry-picking creates a potential of human error (missing parts of a feature, dependencies, etc.)

e A pull request crafted by cherry-picking features has to be reviewed because of the above.

e The source branch (like branch “develop” in example) is never
a continuation of the target branch (like “test”), it is a fork.
Therefore the cherry-picking is necessary.

e This process is repeated on ONE stage of the workflow: staging > beta.

3

’ . O e \,
e There is a possibility that some cherry-picks will O

cause conflicts that has to be resolved by person / featB
with a knowledge not only in the git tool,

but also in a domain, language, ey ‘O _O O #testB
frameworks, libraries, etc. —
—i =)
featA preprod
fitestA

Scenario #2: proposal - benefits

Pull requests are merged only when fully reviewed and tested.

The preprod branch is a place to start development from.

No need of cherry picking anything to deliver work to QA nor PO.

By utilising tags QA can trace their work by referring to a certain points in preprod history.
Less PRs to review.

Less points where human error can occur.

Less engagement needed of the competent developer to formulate push-candidates.

featA preprod
fitestA

