D-wave Ocean Software Here is a comprehensive and detailed list of commands and techniques for using D-Wave Ocean software CLI.
Ensure you have the necessary dependencies and Ocean tools installed.
pip install dwave-ocean-sdk
Set up your D-Wave configuration file (~/.config/dwave/dwave.conf
):
[defaults]
endpoint = https://cloud.dwavesys.com/sapi
token = YOUR_API_TOKEN
solver = YOUR_SOLVER_NAME
Formulate a problem using dimod
and solve it with dwave-system
.
import dimod
from dwave.system import DWaveSampler, EmbeddingComposite
# Define a simple Ising problem
linear = {0: -1, 1: -1}
quadratic = {(0, 1): 1}
bqm = dimod.BinaryQuadraticModel(linear, quadratic, 0.0, dimod.SPIN)
# Use a D-Wave sampler to solve the problem
sampler = EmbeddingComposite(DWaveSampler())
sampleset = sampler.sample(bqm, num_reads=100)
# Print the results
print(sampleset)
Formulate a more complex problem using dimod
and dwavebinarycsp
.
import dimod
import dwavebinarycsp
# Create a CSP for the problem
csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.SPIN)
# Add constraints to the CSP
csp.add_constraint(lambda a, b: a != b, ['a', 'b'])
# Convert CSP to BQM
bqm = dwavebinarycsp.stitch(csp)
# Solve using D-Wave sampler
sampler = EmbeddingComposite(DWaveSampler())
sampleset = sampler.sample(bqm, num_reads=100)
# Print the results
print(sampleset)
Use D-Wave's hybrid solvers for large and complex problems.
from dwave.system import LeapHybridSampler
# Define a large BQM
linear = {i: -1 for i in range(100)}
quadratic = {(i, i+1): 1 for i in range(99)}
bqm = dimod.BinaryQuadraticModel(linear, quadratic, 0.0, dimod.SPIN)
# Solve using the hybrid solver
sampler = LeapHybridSampler()
sampleset = sampler.sample(bqm)
# Print the results
print(sampleset)
-
Embedding:
from dwave.embedding import embed_bqm, unembed_sampleset from dwave.system import DWaveSampler, FixedEmbeddingComposite # Define an embedding embedding = {0: [0, 4], 1: [1, 5], 2: [2, 6], 3: [3, 7]} # Embed and solve the BQM bqm_embedded = embed_bqm(bqm, embedding, sampler.adjacency) sampleset_embedded = sampler.sample(bqm_embedded, num_reads=100) # Unembed the results sampleset = unembed_sampleset(sampleset_embedded, embedding, bqm) print(sampleset)
-
Using composite samplers:
from dwave.system import EmbeddingComposite, DWaveSampler # Use composite samplers for automatic embedding sampler = EmbeddingComposite(DWaveSampler()) sampleset = sampler.sample(bqm, num_reads=100) print(sampleset)
-
Setting annealing time:
sampleset = sampler.sample(bqm, num_reads=100, annealing_time=20) print(sampleset)
-
Adjusting chain strength:
sampleset = sampler.sample(bqm, num_reads=100, chain_strength=2.0) print(sampleset)
-
Energy calculation:
energy = sampleset.first.energy print(f"Energy: {energy}")
-
Inspecting sample states:
sample = sampleset.first.sample print(f"Sample: {sample}")
- Using D-Wave Ocean with NetworkX for graph problems:
import networkx as nx from dwave.networkx.algorithms import traveling_salesperson # Create a graph G = nx.Graph() G.add_edges_from([(0, 1, {'weight': 1}), (1, 2, {'weight': 2}), (2, 0, {'weight': 3})]) # Solve TSP using D-Wave route = traveling_salesperson(G, sampler) print(f"Route: {route}")
-
Submitting problems to D-Wave's cloud:
dwave ping dwave solvers dwave upload my_problem.bqm
-
Managing your cloud account:
dwave config create dwave config show dwave config set endpoint=https://cloud.dwavesys.com/sapi dwave config set token=YOUR_API_TOKEN
-
Using D-Wave Leap IDE:
# Log in to Leap IDE and start a new project
-
Running D-Wave code in Jupyter Notebooks:
# Ensure you have Jupyter and Ocean SDK installed !pip install dwave-ocean-sdk jupyter # Start Jupyter Notebook !jupyter notebook # Create a new notebook and run D-Wave code cells
- Visualizing embedding:
import matplotlib.pyplot as plt from dwave.embedding import draw_chimera_embedding from dwave.system import DWaveSampler sampler = DWaveSampler() embedding = {0: [0, 4], 1: [1, 5], 2: [2, 6], 3: [3, 7]} draw_chimera_embedding(sampler.edgelist, embedding) plt.show()
This extensive and detailed list of commands and techniques covers a wide range of tasks for working with D-Wave Ocean software. From installation and basic problem formulation to advanced techniques, hybrid solvers, embedding, post-processing, cloud management, and visualization, this guide provides a comprehensive resource for quantum programming with D-Wave's Ocean software.